15 research outputs found

    Host-Detrimental Role of Esx-1-Mediated Inflammasome Activation in Mycobacterial Infection

    Get PDF
    The Esx-1 (type VII) secretion system is a major virulence determinant of pathogenic mycobacteria, including Mycobacterium marinum. However, the molecular events and host-pathogen interactions underlying Esx-1-mediated virulence in vivo remain unclear. Here we address this problem in a non-lethal mouse model of M. marinum infection that allows detailed quantitative analysis of disease progression. M. marinum established local infection in mouse tails, with Esx-1-dependent formation of caseating granulomas similar to those formed in human tuberculosis, and bone deterioration reminiscent of skeletal tuberculosis. Analysis of tails infected with wild type or Esx-1-deficient bacteria showed that Esx-1 enhanced generation of proinflammatory cytokines, including the secreted form of IL-1β, suggesting that Esx-1 promotes inflammasome activation in vivo. In vitro experiments indicated that Esx-1-dependent inflammasome activation required the host NLRP3 and ASC proteins. Infection of wild type and ASC-deficient mice demonstrated that Esx-1-dependent inflammasome activation exacerbated disease without restricting bacterial growth, indicating a host-detrimental role of this inflammatory pathway in mycobacterial infection. These findings define an immunoregulatory role for Esx-1 in a specific host-pathogen interaction in vivo, and indicate that the Esx-1 secretion system promotes disease and inflammation through its ability to activate the inflammasome

    Characterization and mitigation of gene expression burden in mammalian cells

    Get PDF
    Despite recent advances in circuit engineering, the design of genetic networks in mammalian cells is still painstakingly slow and fraught with inexplicable failures. Here, we demonstrate that transiently expressed genes in mammalian cells compete for limited transcriptional and translational resources. This competition results in the coupling of otherwise independent exogenous and endogenous genes, creating a divergence between intended and actual function. Guided by a resource-aware mathematical model, we identify and engineer natural and synthetic miRNA-based incoherent feedforward loop (iFFL) circuits that mitigate gene expression burden. The implementation of these circuits features the use of endogenous miRNAs as elementary components of the engineered iFFL device, a versatile hybrid design that allows burden mitigation to be achieved across different cell-lines with minimal resource requirements. This study establishes the foundations for context-aware prediction and improvement of in vivo synthetic circuit performance, paving the way towards more rational synthetic construct design in mammalian cells

    A Computational Mechanism for Initiative in Answer Generation

    No full text
    Initiative in dialogue can be regarded as the speaker taking the opportunity to contribute more information than was his obligation in a particular discourse turn. This paper describes the use of stimulus conditions as a computational mechanism for taking the initiative to provide unrequested information in responses to Yes-No questions, as part of a system for generating answers to Yes-No questions. Stimulus conditions represent types of discourse contexts in which a speaker is motivated to add unrequested information to his answer. Stimulus conditions may be triggered not only by the discourse context at the time when the question was asked, but also by the anticipated context resulting from providing part of the response. We define a set of stimulus conditions based upon previous linguistic studies and a corpus analysis, and describe how evaluation of these stimulus conditions makes use of information from a User Model. Also, we show how the stimulus conditions are used by the gener..
    corecore