56 research outputs found

    The prognostic value of p53 mutation in pediatric marrow hypoplasia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The tumor suppressor gene p53 is involved in the control of cell proliferation, particularly in stressed cells. p 53 gene mutations are the most frequent genetic event found in human cancers. Fanconi Anemia (FA) is the most common representative of inherited bone marrow failure syndromes (IBMFS) with a leukemic propensity. P 53 DNA alteration has not been studied before in Egyptian children with FA.</p> <p>Patients and methods</p> <p>we investigated p53 mutation in the bone marrow and peripheral blood of forty children, FA (n = 10), acquired aplastic anemia (AAA) (n = 10), and immune thrombocytopenia (ITP) as a control (n = 20), using real-time PCR by TaqMan probe assay</p> <p>Results</p> <p>Mutation of p53 gene was demonstrated in the BM of 90% (9/10) of children with FA, compared to 10% (1/10) in AAA (p < 0.001), while, no p53 DNA mutation was seen in the control group. A positive correlation between DNA breakage and presence of p53 mutation was seen in FA (p < 0.02, r0.81).</p> <p>Conclusion</p> <p>mutation of p53 gene in hypoplastic marrow especially FA may represent an early indicator of significant DNA genetic alteration with cancer propensity.</p

    SBDS Expression and Localization at the Mitotic Spindle in Human Myeloid Progenitors

    Get PDF
    BACKGROUND: Shwachman-Diamond Syndrome (SDS) is a hereditary disease caused by mutations in the SBDS gene. SDS is clinically characterized by pancreatic insufficiency, skeletal abnormalities and bone marrow dysfunction. The hematologic abnormalities include neutropenia, neutrophil chemotaxis defects, and an increased risk of developing Acute Myeloid Leukemia (AML). Although several studies have suggested that SBDS as a protein plays a role in ribosome processing/maturation, its impact on human neutrophil development and function remains to be clarified. METHODOLOGY/PRINCIPAL FINDINGS: We observed that SBDS RNA and protein are expressed in the human myeloid leukemia PLB-985 cell line and in human hematopoietic progenitor cells by quantitative RT-PCR and Western blot analysis. SBDS expression is downregulated during neutrophil differentiation. Additionally, we observed that the differentiation and proliferation capacity of SDS-patient bone marrow hematopoietic progenitor cells in a liquid differentiation system was reduced as compared to control cultures. Immunofluorescence analysis showed that SBDS co-localizes with the mitotic spindle and in vitro binding studies reveal a direct interaction of SBDS with microtubules. In interphase cells a perinuclear enrichment of SBDS protein which co-localized with the microtubule organizing center (MTOC) was observed. Also, we observed that transiently expressed SDS patient-derived SBDS-K62 or SBDS-C84 mutant proteins could co-localize with the MTOC and mitotic spindle. CONCLUSIONS/SIGNIFICANCE: SBDS co-localizes with the mitotic spindle, suggesting a role for SBDS in the cell division process, which corresponds to the decreased proliferation capacity of SDS-patient bone marrow CD34(+) hematopoietic progenitor cells in our culture system and also to the neutropenia in SDS patients. A role in chromosome missegregation has not been clarified, since similar spatial and time-dependent localization is observed when patient-derived SBDS mutant proteins are studied. Thus, the increased risk of myeloid malignancy in SDS remains unexplained

    Azacitidine for treatment of imminent relapse in MDS or AML patients after allogeneic HSCT: results of the RELAZA trial

    Get PDF
    This study evaluated azacitidine as treatment of minimal residual disease (MRD) determined by a sensitive donor chimerism analysis of CD34+ blood cells to pre-empt relapse in patients with CD34+ myelodysplastic syndromes (MDS) or acute myeloid leukemia (AML) after allogeneic hematopoietic stem cell transplantation (HSCT). At a median of 169 days after HSCT, 20/59 prospectively screened patients experienced a decrease of CD34+ donor chimerism to <80% and received four azacitidine cycles (75 mg/m2/day for 7 days) while in complete hematologic remission. A total of 16 patients (80%) responded with either increasing CD34+ donor chimerism to ⩾80% (n=10; 50%) or stabilization (n=6; 30%) in the absence of relapse. Stabilized patients and those with a later drop of CD34+ donor chimerism to <80% after initial response were eligible for subsequent azacitidine cycles. A total of 11 patients (55%) received a median of 4 (range, 1–11) additional cycles. Eventually, hematologic relapse occurred in 13 patients (65%), but was delayed until a median of 231 days (range, 56–558) after initial decrease of CD34+ donor chimerism to <80%. In conclusion, pre-emptive azacitidine treatment has an acceptable safety profile and can substantially prevent or delay hematologic relapse in patients with MDS or AML and MRD after allogeneic HSCT

    The 5th edition of the World Health Organization classification of haematolymphoid tumours: myeloid and histiocytic/dendritic neoplasms

    Get PDF
    The upcoming 5th edition of the World Health Organization (WHO) Classification of Haematolymphoid Tumours is part of an effort to hierarchically catalogue human cancers arising in various organ systems within a single relational database. This paper summarizes the new WHO classification scheme for myeloid and histiocytic/dendritic neoplasms and provides an overview of the principles and rationale underpinning changes from the prior edition. The definition and diagnosis of disease types continues to be based on multiple clinicopathologic parameters, but with refinement of diagnostic criteria and emphasis on therapeutically and/or prognostically actionable biomarkers. While a genetic basis for defining diseases is sought where possible, the classification strives to keep practical worldwide applicability in perspective. The result is an enhanced, contemporary, evidence-based classification of myeloid and histiocytic/dendritic neoplasms, rooted in molecular biology and an organizational structure that permits future scalability as new discoveries continue to inexorably inform future editions

    Neutrophil

    No full text

    Dystrophic amyloidosis

    No full text
    corecore