73 research outputs found

    Altering Mucus Rheology to โ€œSolidifyโ€ Human Mucus at the Nanoscale

    Get PDF
    The ability of mucus to function as a protective barrier at mucosal surfaces rests on its viscous and elastic properties, which are not well understood at length scales relevant to pathogens and ultrafine environmental particles. Here we report that fresh, undiluted human cervicovaginal mucus (CVM) transitions from an impermeable elastic barrier to non-adhesive objects sized 1 ยตm and larger to a highly permeable viscoelastic liquid to non-adhesive objects smaller than 500 nm in diameter. Addition of a nonionic detergent, present in vaginal gels, lubricants and condoms, caused CVM to behave as an impermeable elastic barrier to 200 and 500 nm particles, suggesting that the dissociation of hydrophobically-bundled mucin fibers created a finer elastic mucin mesh. Surprisingly, the macroscopic viscoelasticity, which is critical to proper mucus function, was unchanged. These findings provide important insight into the nanoscale structural and barrier properties of mucus, and how the penetration of foreign particles across mucus might be inhibited

    Distribution of Alarin Immunoreactivity in the Mouse Brain

    Get PDF
    Alarin is a 25 amino acid peptide that belongs to the galanin peptide family. It is derived from the galanin-like peptide gene by a splice variant, which excludes exon 3. Alarin was first identified in gangliocytes of neuroblastic tumors and later shown to have a vasoactive function in the skin. Recently, alarin was demonstrated to stimulate food intake as well as the hypothalamicโ€“pituitaryโ€“gonadal axis in rodents, suggesting that it might be a neuromodulatory peptide in the brain. However, the individual neurons in the central nervous system that express alarin have not been identified. Here, we determined the distribution of alarin-like immunoreactivity (alarin-LI) in the adult murine brain. The specificity of the antibody against alarin was demonstrated by the absence of labeling after pre-absorption of the antiserum with synthetic alarin peptide and in transgenic mouse brains lacking neurons expressing the GALP gene. Alarin-LI was observed in different areas of the murine brain. A high intensity of alarin-LI was detected in the accessory olfactory bulb, the medial preoptic area, the amygdala, different nuclei of the hypothalamus such as the arcuate nucleus and the ventromedial hypothalamic nucleus, the trigeminal complex, the locus coeruleus, the ventral chochlear nucleus, the facial nucleus, and the epithelial layer of the plexus choroideus. The distinct expression pattern of alarin in the adult mouse brain suggests potential functions in reproduction and metabolism

    Assessment of Local Public Health Workers' Willingness to Respond to Pandemic Influenza through Application of the Extended Parallel Process Model

    Get PDF
    Local public health agencies play a central role in response to an influenza pandemic, and understanding the willingness of their employees to report to work is therefore a critically relevant concern for pandemic influenza planning efforts. Witte's Extended Parallel Process Model (EPPM) has been found useful for understanding adaptive behavior in the face of unknown risk, and thus offers a framework for examining scenario-specific willingness to respond among local public health workers. We thus aim to use the EPPM as a lens for examining the influences of perceived threat and efficacy on local public health workers' response willingness to pandemic influenza.We administered an online, EPPM-based survey about attitudes/beliefs toward emergency response (Johns Hopkins approximately Public Health Infrastructure Response Survey Tool), to local public health employees in three states between November 2006-December 2007. A total of 1835 responses were collected for an overall response rate of 83%. With some regional variation, overall 16% of the workers in 2006-7 were not willing to "respond to a pandemic flu emergency regardless of its severity". Local health department employees with a perception of high threat and high efficacy--i.e., those fitting a 'concerned and confident' profile in the EPPM analysis--had the highest declared rates of willingness to respond to an influenza pandemic if required by their agency, which was 31.7 times higher than those fitting a 'low threat/low efficacy' EPPM profile.In the context of pandemic influenza planning, the EPPM provides a useful framework to inform nuanced understanding of baseline levels of--and gaps in--local public health workers' response willingness. Within local health departments, 'concerned and confident' employees are most likely to be willing to respond. This finding may allow public health agencies to design, implement, and evaluate training programs focused on emergency response attitudes in health departments

    Common Gene Therapy Viral Vectors Do Not Efficiently Penetrate Sputum from Cystic Fibrosis Patients

    Get PDF
    Norwalk virus and human papilloma virus, two viruses that infect humans at mucosal surfaces, have been found capable of rapidly penetrating human mucus secretions. Viral vectors for gene therapy of Cystic Fibrosis (CF) must similarly penetrate purulent lung airway mucus (sputum) to deliver DNA to airway epithelial cells. However, surprisingly little is known about the rates at which gene delivery vehicles penetrate sputum, including viral vectors used in clinical trials for CF gene therapy. We find that sputum spontaneously expectorated by CF patients efficiently traps two viral vectors commonly used in CF gene therapy trials, adenovirus (dโˆผ80 nm) and adeno-associated virus (AAV serotype 5; dโˆผ20 nm), leading to average effective diffusivities that are โˆผ3,000-fold and 12,000-fold slower than their theoretical speeds in water, respectively. Both viral vectors are slowed by adhesion, as engineered muco-inert nanoparticles with diameters as large as 200 nm penetrate the same sputum samples at rates only โˆผ40-fold reduced compared to in pure water. A limited fraction of AAV exhibit sufficiently fast mobility to penetrate physiologically thick sputum layers, likely because of the lower viscous drag and smaller surface area for adhesion to sputum constituents. Nevertheless, poor penetration of CF sputum is likely a major contributor to the ineffectiveness of viral vector based gene therapy in the lungs of CF patients observed to date

    Stochastic light concentration from 3D to 2D reveals ultraweak chemi- and bioluminescence

    Get PDF
    For countless applications in science and technology, light must be concentrated, and concentration is classically achieved with reflective and refractive elements. However, there is so far no efficient way, with a 2D detector, to detect photons produced inside an extended volume with a broad or isotropic angular distribution. Here, with theory and experiment, we propose to stochastically transform and concentrate a volume into a smaller surface, using a high- albedo Ulbricht cavity and a small exit orifice through cavity walls. A 3D gas of photons produced inside the cavity is transformed with a 50% number efficiency into a 2D Lambertian emitting orifice with maximal radiance and a much smaller size. With high-albedo quartz-powder cavity walls ( P = 99.94%), the orifice area is 1/( 1 - P) approximate to 1600 times smaller than the walls' area. When coupled to a detectivity-optimized photon-counter ( D = 0.015 photon- 1 s1/ 2 cm) the detection limit is 110 photon s- 1 L- 1. Thanks to this unprecedented sensitivity, we could detect the luminescence produced by the non-catalytic disproportionation of hydrogen peroxide in pure water, which has not been observed so far. We could also detect the ultraweak bioluminescence produced by yeast cells at the onset of their growth. Our work opens new perspectives for studying ultraweak luminescence, and the concept of stochastic 3D/2D conjugation should help design novel light detection methods for large samples or diluted emitters
    • โ€ฆ
    corecore