11 research outputs found

    Compliant and stretchable thermoelectric coils for energy harvesting in miniature flexible devices.

    Get PDF
    With accelerating trends in miniaturization of semiconductor devices, techniques for energy harvesting become increasingly important, especially in wearable technologies and sensors for the internet of things. Although thermoelectric systems have many attractive attributes in this context, maintaining large temperature differences across the device terminals and achieving low-thermal impedance interfaces to the surrounding environment become increasingly difficult to achieve as the characteristic dimensions decrease. Here, we propose and demonstrate an architectural solution to this problem, where thin-film active materials integrate into compliant, open three-dimensional (3D) forms. This approach not only enables efficient thermal impedance matching but also multiplies the heat flow through the harvester, thereby increasing the efficiencies for power conversion. Interconnected arrays of 3D thermoelectric coils built using microscale ribbons of monocrystalline silicon as the active material demonstrate these concepts. Quantitative measurements and simulations establish the basic operating principles and the key design features. The results suggest a scalable strategy for deploying hard thermoelectric thin-film materials in harvesters that can integrate effectively with soft materials systems, including those of the human body

    Lattice Softening Significantly Reduces Thermal Conductivity and Leads to High Thermoelectric Efficiency

    No full text
    The influence of micro/nanostructure on thermal conductivity is a topic of great scientific interest, particularly to thermoelectrics. The current understanding is that structural defects decrease thermal conductivity through phonon scattering where the phonon dispersion and speed of sound are assumed to remain constant. Experimental work on a PbTe model system is presented, which shows that the speed of sound linearly decreases with increased internal strain. This softening of the materials lattice completely accounts for the reduction in lattice thermal conductivity, without the introduction of additional phonon scattering mechanisms. Additionally, it is shown that a major contribution to the improvement in the thermoelectric figure of merit (zT > 2) of high-efficiency Na-doped PbTe can be attributed to lattice softening. While inhomogeneous internal strain fields are known to introduce phonon scattering centers, this study demonstrates that internal strain can modify phonon propagation speed as well. This presents new avenues to control lattice thermal conductivity, beyond phonon scattering. In practice, many engineering materials will exhibit both softening and scattering effects, as is shown in silicon. This work shines new light on studies of thermal conductivity in fields of energy materials, microelectronics, and nanoscale heat transfer

    Compliant and stretchable thermoelectric coils for energy harvesting in miniature flexible devices

    No full text
    With accelerating trends in miniaturization of semiconductor devices, techniques for energy harvesting become increasingly important, especially in wearable technologies and sensors for the internet of things. Although thermoelectric systems have many attractive attributes in this context, maintaining large temperature differences across the device terminals and achieving low-thermal impedance interfaces to the surrounding environment become increasingly difficult to achieve as the characteristic dimensions decrease. Here, we propose and demonstrate an architectural solution to this problem, where thin-film active materials integrate into compliant, open threedimensional (3D) forms. This approach not only enables efficient thermal impedancematching but alsomultiplies the heat flow through the harvester, thereby increasing the efficiencies for power conversion. Interconnected arrays of 3D thermoelectric coils built using microscale ribbons of monocrystalline silicon as the active material demonstrate these concepts. Quantitative measurements and simulations establish the basic operating principles and the key design features. The results suggest a scalable strategy for deploying hard thermoelectric thin-film materials in harvesters that can integrate effectively with soft materials systems, including those of the human body

    Eletroestimulação muscular: alternativa de tratamento coadjuvante para pacientes com doença arterial obstrutiva periférica Muscle electrostimulation: alternative adjuvant treatment to patients with peripheral arterial obstructive disease

    No full text
    A doença arterial periférica faz parte de um grupo de patologias vasculares que evolui de forma lenta e progressiva. A proposta deste artigo foi avaliar, por meio de revisão bibliográfica, os possíveis benefícios da eletroestimulação crônica como tratamento coadjuvante para pacientes arteriopatas. De acordo com a literatura analisada, concluímos que a eletroestimulação é capaz de provocar alterações importantes no perfil metabólico das fibras musculares, convertendo-as do tipo II para o tipo I, o que induz o crescimento capilar, a densidade capilar e o suprimento de oxigênio. Desta forma, este recurso terapêutico aumenta a capacidade aeróbica oxidativa e a resistência à fadiga dos músculos isquêmicos. Assim, a eletroestimulação é mais um recurso terapêutico capaz de melhorar a habilidade para caminhar destes pacientes, diminuindo gastos com cirurgias de revascularização e complicações maiores.<br>Peripheral arterial disease is included in a group of vascular diseases whose evolution is slow and progressive. This article aimed at performing a literature review to evaluate the benefits of chronic electrostimulation as adjuvant treatment for arteriopathic patients. Based on the literature, we concluded that electrostimulation can generate important changes in the metabolic profile of muscle fibers, switching them from type II to type I, which leads to capillary increase, capillary density and suppression of oxygen. Therefore, this therapeutic resource increases aerobic oxidative capacity and ischemic muscle resistance to fatigue. Thus, electrostimulation is another therapeutic option able to improve these patients' walking ability, reducing expenses related to revascularization surgeries and major complications
    corecore