22 research outputs found

    Transforming growth factor-β and breast cancer: Tumor promoting effects of transforming growth factor-β

    Get PDF
    The transforming growth factor (TGF)-βs are potent growth inhibitors of normal epithelial cells. In established tumor cell systems, however, the preponderant experimental evidence suggests that TGF-βs can foster tumor-host interactions that indirectly support the viability and/or progression of cancer cells. The timing of this 'TGF-β switch' during the progressive transformation of epithelial cells is not clear. More recent evidence also suggests that autocrine TGF-β signaling is operative in some tumor cells, and can also contribute to tumor invasiveness and metastases independent of an effect on nontumor cells. The dissociation of antiproliferative and matrix associated effects of autocrine TGF-β signaling at a transcriptional level provides for a mechanism(s) by which cancer cells can selectively use this signaling pathway for tumor progression. Data in support of the cellular and molecular mechanisms by which TGF-β signaling can accelerate the natural history of tumors will be reviewed in this section

    The metabolite BH4 controls T cell proliferation in autoimmunity and cancer

    No full text
    Genetic regulators and environmental stimuli modulate T cell activation in autoimmunity and cancer. The enzyme co-factor tetrahydrobiopterin (BH4) is involved in the production of monoamine neurotransmitters, the generation of nitric oxide, and pain1,2. Here we uncover a link between these processes, identifying a fundamental role for BH4 in T cell biology. We find that genetic inactivation of GTP cyclohydrolase 1 (GCH1, the rate-limiting enzyme in the synthesis of BH4) and inhibition of sepiapterin reductase (the terminal enzyme in the synthetic pathway for BH4) severely impair the proliferation of mature mouse and human T cells. BH4 production in activated T cells is linked to alterations in iron metabolism and mitochondrial bioenergetics. In vivo blockade of BH4 synthesis abrogates T-cell-mediated autoimmunity and allergic inflammation, and enhancing BH4 levels through GCH1 overexpression augments responses by CD4- and CD8-expressing T cells, increasing their antitumour activity in vivo. Administration of BH4 to mice markedly reduces tumour growth and expands the population of intratumoral effector T cells. Kynurenine—a tryptophan metabolite that blocks antitumour immunity—inhibits T cell proliferation in a manner that can be rescued by BH4. Finally, we report the development of a potent SPR antagonist for possible clinical use. Our data uncover GCH1, SPR and their downstream metabolite BH4 as critical regulators of T cell biology that can be readily manipulated to either block autoimmunity or enhance anticancer immunity

    The metabolite BH4 controls T cell proliferation in autoimmunity and cancer

    No full text
    Genetic regulators and environmental stimuli modulate T cell activation in autoimmunity and cancer. The enzyme co-factor tetrahydrobiopterin (BH4) is involved in the production of monoamine neurotransmitters, the generation of nitric oxide, and pain1,2. Here we uncover a link between these processes, identifying a fundamental role for BH4 in T cell biology. We find that genetic inactivation of GTP cyclohydrolase 1 (GCH1, the rate-limiting enzyme in the synthesis of BH4) and inhibition of sepiapterin reductase (the terminal enzyme in the synthetic pathway for BH4) severely impair the proliferation of mature mouse and human T cells. BH4 production in activated T cells is linked to alterations in iron metabolism and mitochondrial bioenergetics. In vivo blockade of BH4 synthesis abrogates T-cell-mediated autoimmunity and allergic inflammation, and enhancing BH4 levels through GCH1 overexpression augments responses by CD4- and CD8-expressing T cells, increasing their antitumour activity in vivo. Administration of BH4 to mice markedly reduces tumour growth and expands the population of intratumoral effector T cells. Kynurenine—a tryptophan metabolite that blocks antitumour immunity—inhibits T cell proliferation in a manner that can be rescued by BH4. Finally, we report the development of a potent SPR antagonist for possible clinical use. Our data uncover GCH1, SPR and their downstream metabolite BH4 as critical regulators of T cell biology that can be readily manipulated to either block autoimmunity or enhance anticancer immunity

    An siRNA screen identifies RSK1 as a key modulator of lung cancer metastasis

    No full text
    We performed a kinome-wide siRNA screen and identified 70 kinases altering cell migration in A549 lung cancer cells. In particular, ribosomal S6 kinase 1 (RSK1) silencing increased, whereas RSK2 and RSK4 downregulation inhibited cell motility. In a secondary collagen-based three-dimensional invasion screen, 38 of our hits cross-validated, including RSK1 and RSK4. In two further lung cancer cell lines, RSK1 but not RSK4 silencing showed identical modulation of cell motility. We therefore selected RSK1 for further investigation. Bioinformatic analysis followed by co-immunoprecipitation-based validation revealed that the actin regulators VASP and Mena interact with RSK1. Moreover, RSK1 phosphorylated VASP on T278, a site regulating its binding to actin. In addition, silencing of RSK1 enhanced the metastatic potential of these cells in vivo using a zebrafish model. Finally, we investigated the relevance of this finding in human lung cancer samples. In isogenically matched tissue, RSK1 was reduced in metastatic versus primary lung cancer lesions. Moreover, patients with RSK1-negative lung tumours showed increased number of metastases. Our results suggest that the findings of our high-throughput in vitro screen can reliably identify relevant clinical targets and as a proof of principle, RSK1 may provide a biomarker for metastasis in lung cancer patients
    corecore