5 research outputs found

    When less is more: Robot swarms adapt better to changes with constrained communication

    Get PDF
    To effectively perform collective monitoring of dynamic environments, a robot swarm needs to adapt to changes by processing the latest information and discarding outdated beliefs. We show that in a swarm composed of robots relying on local sensing, adaptation is better achieved if the robots have a shorter rather than longer communication range. This result is in contrast with the widespread belief that more communication links always improve the information exchange on a network. We tasked robots with reaching agreement on the best option currently available in their operating environment. We propose a variety of behaviors composed of reactive rules to process environmental and social information. Our study focuses on simple behaviors based on the voter model—a well-known minimal protocol to regulate social interactions—that can be implemented in minimalistic machines. Although different from each other, all behaviors confirm the general result: The ability of the swarm to adapt improves when robots have fewer communication links. The average number of links per robot reduces when the individual communication range or the robot density decreases. The analysis of the swarm dynamics via mean-field models suggests that our results generalize to other systems based on the voter model. Model predictions are confirmed by results of multiagent simulations and experiments with 50 Kilobot robots. Limiting the communication to a local neighborhood is a cheap decentralized solution to allow robot swarms to adapt to previously unknown information that is locally observed by a minority of the robots

    Guerrilla Performance Analysis for Robot Swarms: Degrees of Collaboration and Chains of Interference Events

    No full text
    Scalability is a key feature of swarm robotics. Hence, measuring performance depending on swarm size is important to check the validity of the design. Performance diagrams have generic qualities across many different application scenarios. We summarize these findings and condense them in a practical performance analysis guide for swarm robotics. We introduce three general classes of performance: linear increase, saturation, and increase/decrease. As the performance diagrams may contain rich information about underlying processes, such as the degree of collaboration and chains of interference events in crowded situations, we discuss options for quickly devising hypotheses about the underlying robot behaviors. The validity of our performance analysis guide is then made plausible in a number of simple examples based on models and simulations.SCOPUS: cp.kinfo:eu-repo/semantics/publishe

    Medicinal halophytes: potent source of health promoting biomolecules with medical, nutraceutical and food applications

    No full text
    corecore