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Short title: When less is more in robot swarm adaptation

Summary: Swarms of minimalistic robots can better respond to environmental changes when

communication among robots is reduced

To effectively perform collective monitoring of dynamic environments, a

robot swarm needs to adapt to changes by processing new information

and discarding outdated beliefs. We show that in a swarm composed

of robots relying on local sensing, adaptation is better achieved if the

robots have a shorter rather than longer communication range. This re-

sult is in contrast with the widespread belief that more communication

links always improve the information exchange on a network. We tasked

robots with reaching agreement on the best option currently available in

their operating environment. We propose a variety of behaviours com-

posed of reactive rules to process environmental and social information.

Our study focuses on simple behaviours based on the voter model—a

well-known minimal protocol to regulate social interactions—that can

be implemented in minimalistic machines. While different from each

other, all behaviours confirm the general result: the ability of the swarm

to adapt improves when robots have fewer communication links. The

average number of links per robot reduces when the individual com-

munication range or the robot density decrease. The analysis of the

swarm dynamics via mean-field models suggests that our results gener-

alise to other systems based on the voter model. Model predictions are



confirmed by results of multiagent simulations and experiments with 50

Kilobot robots. Limiting the communication to a local neighbourhood

is a cheap decentralised solution to allow robot swarms to adapt to new

information that is locally observed by a minority of the robots.

Introduction

Monitoring an environment through a swarm of minimalistic robots can be useful in adverse

scenarios that impose constraints on the individual robots’ capabilities [1, 2, 3]. Examples

are biodegradable devices—simple by design constraints—to monitor remote locations, such as

ocean floors or in-body blood vessels [4], or disposable devices—simple by budget constraints—

deployed in hazardous search and rescue missions with a high risk of damage [5]. This type of

application may not allow for centralised control or human supervision, whereas controlling the

robots via minimalistic decentralised behaviours can be a viable solution. Minimal computing

provides the advantage of higher transferability to simpler platforms, such as nano and micro-

robots [6, 7]. In this paper, we investigate the general scenario in which the environment has n

alternative target sites, each with an intrinsic importance (or quality), and the swarm is tasked

with reaching a consensus in favour of the most important site, the so-called best-of-n problem

(see Fig. 1).

Considerable work has been dedicated to the design of decentralised robot behaviours to

solve the best-of-n problem [10, 11, 12]. Compared with previous work, we solve a more

general variant of the problem using simpler robots in terms of required capabilities. While

most studies have investigated solutions of the best-of-n problem in static and binary (n =

2) setups, here we provide minimal behaviours to reach consensus decisions in a dynamic

environment in which the number of target sites n, as well as their quality, vary over time.

Despite previous studies having shown qualitative changes in the system dynamics for n > 2

[13], only a few studies have considered the best-of-n problem with more than two options.

The proposed solutions typically employ robots with higher requirements than ours in terms

of computation, memory, and communication capabilities, and assume prior knowledge of the

number and location of the alternatives [14, 15, 16, 17, 18] (see also Text ST1). Exceptions

are our previous works [19, 20], which rely on similar minimalistic behaviour and absence of

prior knowledge, but are limited to static environments. There are other minimal behaviours,

e.g. [21], that could potentially be modified to remove limiting assumptions on robot’s prior
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Figure 1: Adaptive monitoring of time-varying environments. (A) The robot swarm
may be deployed to monitor a forest fire and collectively select the best site (e.g. most urgent)
where the action of firefighters on the ground is necessary [8]. Robots explore the environment
to acquire individual information and communicate with each other to exchange opinions.
(B) We test the behaviour on a swarm of 50 Kilobots, which are simple robots with limited
capabilities. The target sites, here superimposed on the image as coloured circles, are perceived
by the robots through the Augmented Reality for Kilobot (ARK) system [9], which allows the
robots to perceive a simulated time-varying environment. Over time, new sites appear and
existing sites change in quality or disappear. The swarm adapts accordingly. Videos of the
experiments are available as supplementary electronic material as Movies 1, 2, and 3.

knowledge, however, it has been shown they are unable to adapt to environmental changes

[21, 22]. The few studies on best-of-n decisions in time-varying environments are limited to

n = 2 binary decisions with robots knowing a priori the options [23] or their location [24, 22, 25],

and only agreeing on the one with the highest quality. Requiring prior knowledge about the

number of alternatives n may reduce the applicability of such solutions. As well as collectively

selecting the best alternative, a decentralised process of decision making should also include

the phase of decentralised discovery of the available alternatives [26, 27]. Behaviours that

proved successful in the voting phase may suffer a drastic reduction of their performance, when

both the discovery and voting phases are considered [20]. We study collective behaviours to

operate in time-varying environments, therefore they include both the mechanisms to discover

environmental changes and to spread the new information. Time-varying environments are an



intrinsic characteristic of several application scenarios, and efficient solutions that consider this

aspect are therefore necessary for the deployment of robot swarms into the real world.

In this study, the robots have no prior knowledge of the problem. Instead, a robot can

only know about a target site either via individual exploration of the environment (it discovers

the site) or through social interactions with other robots (it receives the site’s location). We

consider robots that have minimal sensory, memory, and communication capabilities. In terms

of sensory capabilities, robots in close proximity to a target site are able to make noisy estimates

of its quality. Additionally, as the task requires the selection of the best site, robots are able to

estimate their own approximate position and move within the environment. In terms of memory

capabilities, each robot can only memorise the location and quality of the selected site—that is,

the robot has one opinion about the best site. In terms of communication capabilities, a robot

can only locally broadcast one single piece of information: the location of the site it considers

to be the best.

The robots combine information that they locally acquire in the environment with informa-

tion that they receive from other swarm members. Our behaviours are based on the classical

voter model [28], in which each robot is iteratively influenced by a single random neighbour.

Individual and social information is combined through a behaviour based on the cross-inhibition

pattern [19, 11], by which conflicting information between two communicating robots causes

the robots to reset their own opinion and poll other robots’ opinions. Via cross-inhibition a

swarm can reach a consensus on the best available option while avoiding decision-deadlocks,

as shown in theoretical models [29, 13], honeybee nest-site selection [30], and robotic appli-

cations [31, 20]. A widely employed alternative behaviour is based on the direct-switching

pattern [32]. This, however, has the limitation of only breaking the deadlock of symmetric

decisions—when options have the same quality—through noise [33, 34, 35], and therefore can

be slow. Through a combination of experiments, simulations, and mathematical analysis, we

study when behaviours based on cross-inhibition and direct-switching can adapt to changes in

the environment, in particular when the best site appears, disappears, or changes its quality.

Through analysis at multiple description levels we measure to what extent these behaviours

are scalable to increasing swarm sizes, are sensitive to social information, and are robust to

sensorial noise.

To precisely control the swarm behaviour and predict its dynamics in different scenarios,

we model the collective dynamics through a system of ordinary differential equations (ODEs).



In swarm robotics, accurate models are necessary but generally hard to obtain [1, 36, 12].

We show that our model accurately predicts the swarm dynamics and highlights a counter-

intuitive mechanism: by reducing the range of communication, the swarm can better adapt

to changing environments. This result is general across our tested behaviours, and through

the model we can understand the cause of this effect. In our experiments, we observe that

less, in terms of fewer communication links per robot, leads to more effective spreading of

information within the swarm (Movie 1). This result is in contradiction to the widely accepted

belief that more connected networks share information more effectively [37, 38, 21, 39], and is

instead congruent with works that document the emergence of the “slower is faster” effect [40].

This effect occurs when increasing the performance at the individual level causes a decrease in

the collective performance, and has been found in several other contexts, such as ecology [41],

voting dynamics [42, 43], and collective animal behaviour [44, 45]. In this study, by reducing

the number of communication links, robots sacrifice information spreading speed, which is

maximised in highly connected swarms, to facilitate adaptation. Such a solution is simple and

highly effective.

Movie 1. Less is more: when simple robots have access to less social information, due to fewer
communication links, they can adapt better to environmental changes.

Results

We designed two collective robot behaviours to solve the problem of selecting the best site

(best-of-n) in dynamic environments. We opted for minimalistic behaviours which can also

run on minimal machines with limited capabilities. Both behaviours extend the classical voter
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Figure 2: Individual robot behaviour. (A)-(B) The robot iteratively updates its opinion
based on environmental (dashed transition lines) and social information (solid transition lines).
The behaviours can include any of two alternative exploration rules (green dashed transition),
compare and resample, and any of two alternative social interaction patterns (black solid
lines), cross-inhibition (A) and direct-switching (B). Through direct-switching, any robot can
get recruited and immediately changes its commitment state. Instead, through cross-inhibition
only polling robots can be recruited. Therefore, when a committed robot receives a message
from a robot committed to a different site, it resets its commitment (inhibition) and activates the
polling state. (C) Pseudo-algorithm of the robot behaviour in the committed state (and in the
uncommitted state when memory is void). The green and red conditions are mutually exclusive
and indicate the effect of the resample and compare rule, respectively. These minimalistic
behaviours can be potentially implemented on extremely simple devices. See more details in
Text ST2.

model [28], in which, at each control step, a robot randomly selects one of the messages from

its neighbours to update its opinion (see Fig. 2). The message only contains the location of the

sender’s preferred site i, thus a robot, once informed about a new site, goes to assess its quality

qi. While doing so, the robot remains in a polling state in which it listens to incoming messages

that it uses to update the location of the target site. Equipped with social information, the

polling robot follows a biased random walk until a target site is reached and estimates its

quality. During this biased random walk, the robot most often reaches the target site that

has more support among its neighbours. Robots, to avoid the quick spreading of erroneous

information, do not share the quality of their preferred site but each make an independent

noisy estimate, a method that has been shown to improve collective decision accuracy [46, 20].

Non-polling robots instead diffuse in the environment through a random walk to monitor the

available target sites and to share their opinion with each other on the best site. When a robot

does not have an opinion (i.e. it is uncommitted) and encounters a new target site Tx, it makes

a noisy estimate of its quality qx and selects Tx as the best site (commits to Tx) with probability



proportional to qx. Every time a robot committed to Tx moves in the proximity of site Tx, it

updates the noisy estimate qx to keep track of possible quality variations over time. The swarm

converges towards the best option because each robot communicates with a frequency linearly

proportional to the estimated quality [47]. Such quality-dependent communication was inspired

by the house-hunting behaviour of social insects [48, 49] and was successfully implemented in

several swarm robotics systems [46, 47, 50, 21, 19].

The presented behaviour implements the cross-inhibition pattern for the update of social

information [29, 19, 13, 30]. The peculiarity of this social update pattern is the inhibition

between robots committed to different sites (Fig. 2(A)). Upon inhibition, the robot enters a

state of ‘indecision’, the polling state, during which it temporarily suspends active recruitment

and polls other robots’ opinions until it gets recruited. The alternative social update pattern

is the direct-switching pattern, by which robots committed to different sites directly recruit

each other (Fig. 2(B)). A recruited robot directly switches its commitment without activating

the polling state. We tested both social information transfer patterns in theory, and the cross-

inhibition pattern, which analysis predicts is more robust [29, 13], in physical robot swarms.

Our focus is on the ability of the swarm to collectively select the best site and, more impor-

tantly, to adapt to environmental changes when a better site appears, the best site disappears,

or a site’s quality changes. After any of these changes, we want the swarm to converge to a

stable consensus in favour of the best site, with a supermajority of the population (quorum

80%) having the same opinion. In order to let the swarm adapt, we introduce two alternative

rules to allow individual robots to reconsider their opinion when exposed to new environmental

evidence; compare and resample.

Minimal rules are sufficient to let the swarm adapt to dynamic envi-
ronments

We propose the compare and the resample exploration rules to extend the base behaviour of

Fig. 2. These rules allow committed robots to constantly process new information they locally

acquired from the environment, as otherwise the swarm may ‘freeze’ into an absorbing state.

The compare rule lets the robot compare the quality of its chosen site with the quality of any

site found in the environment and probabilistically commit to the new site only if it has a

higher quality. In this way, individual robots locally filter environmental information with a

response threshold that dynamically changes with the current quality estimate [51, 52] (see



Materials and Methods and Text ST2). The resample rule does not require any comparison

but committed robots process new environmental information—upon discovery—with a small

constant probability α [53]. In this way, swarms that reached a consensus for the best location

maintain on average a small proportion of robots reconsidering their opinion.

Comparing the performance of the two exploration rules —compare or resample—Fig. 3

shows the relationship between increasing individual robot capabilities and faster collective

adaptation. On the one hand, when robots individually filter the environmental information

(compare rule), the swarm shows a faster collective response to changes (Fig. 3(B)). However,

filtering through comparison requires slightly more computation and the possibility to store the

option’s quality for subsequent comparison; such requirements may not be available at every

degree of individual complexity or even necessary [54]. On the other hand, the resample explo-

ration rule is a reactive technique that does not require any additional individual computation

nor capability, at the cost of a slower collective adaptation to changes (Fig. 3(D)). Additionally,

the individual-level simplicity of this rule requires the selection of the parameter α for proba-

bilistic environmental sampling. Very low α will not let the swarm adapt, while values of α that

are excessively high can cause the swarm to remain undecided, with a considerable fraction of

robots constantly changing opinion for any of the n alternative sites (see Fig. S1). Therefore

the value of α needs to be appropriately selected depending on the scenario and individual

characteristics (see sensitivity analysis in Text ST3).

Communication range negatively correlates with swarm adaptability

Multiagent simulations show a counter-intuitive result. Figs. 3(A,C) show the probability of

the swarm adapting for increasing communication range rs and swarm size S. The swarm

starts from a full consensus in favour of a target site Tx when a new target site Ty with better

quality (qy > qx) appears. We observe that through both rules, resample and compare, the

swarm has a lower probability of adapting with an increased communication range. In the

extreme case of a fully connected network—attained with the maximum communication range

rs = 0.5—a simulated swarm of S > 10 robots is never able to adapt to new better sites. From

the point of view of social interactions (not considering physical interactions), an increase in

communication range is equivalent to an increase in robot density. In dense conditions, the high

number of neighbours per robot undermines the ability to adapt. Figs. 3(B,D) instead show

that extremely low values of the communication range can slow down the adaptation. There is



therefore an intermediate value for which adaptation occurs at maximum speed. Qualitatively

similar results can be obtained with more sophisticated mechanisms to sample the neighbours’

votes. In Text ST4, we show that collective behaviours based on the local majority rule (i.e.

selecting the site that has been voted the most by the neighbours) also benefit from a limited

number of communication links per robot.

A strongly-opinionated minority encounters competition among vot-
ers

Figure 3: Large communication ranges and swarm sizes are detrimental to swarm
adaptability. The probability and speed of adaptation to a new better target site (with
quality qx = 0.8), when the swarm starts from a full commitment in favour of an inferior site
(with quality qy = 0.7), for the four analysed behaviours. Greyscale maps show results for 100
multiagent simulations of Tmax = 6·104 time steps; simulated agents only use the cross-inhibition
pattern. Superimposed lines are theoretical predictions; theory and simulations show good
qualitative agreement. (A)-(C) Adaptation probability is the proportion of runs that adapted
over the total number of simulations. Adaptation probability decreases for increasing swarm
size S and increasing communication ranges; lines show the bifurcation point (see Materials
and Methods) for both social interactions patterns. (B)-(D) Adaptation speed is high for
low communication ranges and swarm sizes; superimposed lines show predicted connectivity
transitions: the dashed curve predicts, on average, one neighbour per robot 〈k〉 = 1 and the solid
curve 〈k〉 = k∗ = 4.51 neighbours per robot (corresponding to the giant-component transition
[55]). The best performance in terms of both speed and ability to adapt can be achieved with
intermediate values of 〈k〉. The inset shows that increasing the robots’ communication range
rs, or the swarm size S, the average number of communication links per robots per timestep
〈k〉 increases accordingly.



To understand and predict the swarm behaviour and the effect of the parameters on the

performance, we modelled the collective decision making process through a system of ODEs.

Each equation describes how subpopulations (groups of robots with the same opinion) change

over time as a function of environmental characteristics and robots’ capabilities. While we

control the robots with individual-level behaviours (Fig. 2), we are interested in understanding

and predicting the resulting collective behaviour, which we describe with our models.

A classical approach to model the collective behaviour of a robot swarm is to build a

mean-field model describing the average behaviour of an infinite-sized swarm of fully-connected

individuals [36]. While this type of model has proved very useful in several scenarios [56,

57, 58], their assumptions make them of little utility to explain the dynamics observed in

the scenario we consider here. A model that assumes an infinite-size system cannot describe

size-dependent dynamics. We observed above that the investigated swarm has a qualitative

change in its environmental response depending on its size (see Fig. 3). Additionally, in swarm

robotic systems local communication limits the interaction at each voting iteration to a limited

neighbourhood (a small fraction of the entire population), therefore assuming a fully-connected

mean-field communication topology may typically be inaccurate. Therefore we developed an

ODE model that has explicit dependence on swarm size and robot density, and is able to

describe effects determined by a sparse communication topology.

Typically, at the start of every adaptation, the swarm has reached a consensus for the

previously best site Ty, when a new better site Tx appears. Therefore subpopulations com-

mitted to different sites have sizes very different from each other and the few-vs-many con-

dition arises—that is, there is a small minority competing against a large majority. Depend-

ing on how frequently their members vote, subpopulations can be considered as strongly- or

weakly-opinionated. Since communication frequency is proportional to site qualities qx and

qy, with qx > qy, the small fraction of robots that spontaneously discover Tx—the strongly-

opinionated minority of size Sx—will vote more frequently than robots committed to Ty—the

weakly-opinionated majority of size Sy. However, in the few-vs-many condition, competition

among voting messages may nullify the bias from quality-dependent communication frequency,

and lock the swarm into a consensus for the inferior site Ty. Competition arises because robots

select messages following the voter model approach [28]. Therefore a robot with m neighbours

will select (and process the information of) one message among the m received messages (as-

suming that all m neighbours have sent their message). As a consequence, each neighbour



(voter) of a robot (receiver) has a 1/m probability that its message would be read. It is there-

fore clear that increasing the number of neighbours that each robot has would dilute the impact

of each voter. We model such a competition among voters via the Holling type II functional

response of Fig. 4(A), which was originally formulated in ecology to describe the interplay be-

tween populations of prey and predators [59]. This functional response accounts for the fact

that a predator requires time to consume prey. Therefore the biomass of the consumed prey in-

creases sublinearly with the biomass of the prey population. The same functional form has also

been used in different fields with different names, for example, the Michaelis-Menten equation

in chemical kinetics [60] and the Hill equation in biochemistry [61].

Borrowing the terminology from ecology, we show in Fig. 4(A) the extreme few-vs-many

condition of a single ‘predator’ (minority committed to Tx of size Sx = 1, red agent in Fig 4(A))

and S − 1 ‘prey’ (susceptible robots, majority committed to Ty). The ‘predator’ can ‘eat’

(recruit) a number of ‘prey’ that is a function of the majority size Sy = S − 1. In small

swarms, the recruitment rate per voter is limited by the event of susceptible robots entering

the communication range of the single committed robot (which occurs with rate proportional

to the robot’s communication area π r2s). By increasing the swarm size, the recruitment rate to

Tx increases as the probability of committed-susceptible interaction increases, until it saturates

at a maximum rate where the population density is high (Fig. 4(A)). In large swarms, the

recruitment rate saturates because in a high density situation each message competes with

several others to be read. Note that, in our system, the robots both receive and send messages,

therefore increasing the number of susceptible robots (majority) also increases the competition

among messages.

Through the functional response of Fig. 4(A), our model introduces recruitment rates that

are asymmetric with respect to the number of recruiters and susceptible robots. Fig. 4(B) shows

that asymmetry in the interactions can lead to a higher recruitment rate for the inferior site than

for the superior one, when Sx ≪ Sy. Instead, with the standard infinite-size approximation

[36], the mean-field model always has symmetric recruitment rates (with the red curve of

Fig. 4(B) always higher than the blue). Asymmetric recruitment rates cause a non-monotonic

commitment rate to Tx and thus a bistability of consensus (Figs. 4(C)-(E)). The asymmetry

vanishes as robot density is decreased (Figs. 4(C)-(D)), restoring mono-stability for the best

site. As a consequence, in low robot densities, there is a small difference between ours and the

infinite-size models. This difference increases as either swarm size S or communication range



rs increases. Stability analysis reveals, for both the compare and resample rules and both the

cross-inhibition and direct-switching patterns, the presence of a bifurcation as the robot density

is increased (see Fig. 3). Prior to bifurcation (small S, small rs), the single stable fixed point

corresponds to the entire group adapting to the best option, in agreement with infinite-size

approximations. After the bifurcation, a second stable fixed point appears which corresponds

to the swarm being unable to adapt to the new better option, remaining instead trapped in the

current consensus on Ty (Fig. S6). Employing classical mean-field approximation, no bifurcation

would be present and it would fail to describe the robot swarm dynamics.

Figure 4: Modelling asymmetric recruitment rates explains the interplay between a
strongly-opinionated minority and weakly-opinionated majority. (A) A single robot
committed to the superior site Tx (red agent in the insets) recruits susceptible robots (blue
agents committed to the inferior site Ty) at a rate that grows sublinearly with the number of
susceptible robots (here S − 1). The recruitment rate, based on the Holling type II functional
response (red solid curve), increases with S when the number of susceptible robots is low and
interactions sporadic. For high numbers, the rate saturates to the frequency of transmission
(horizontal dot-dashed line). This is in contrast to the infinite-size approximation, in which
the recruitment rate (green dashed line) has linear dependence on the number of susceptible
robots. (B) Recruitment rate to a superior (red qx = 0.8) and an inferior (blue qy = 0.7) site is
asymmetric in our model (solid lines) and symmetric in infinite-size models (dashed lines). We
fix S = 100 and vary the number of recruiters to Tx on the horizontal axis (where the recruiters
to Ty are the complement to x-axis values, S−x, for direct-switching). (C)-(E) Rate of change
of robots committed to site Tx (y-axis) against proportion of robots committed to Tx (x-axis), as
from Eq. (1), for varying swarm density (C), swarm size S (D), and for the compare (C)-(D)
and the resample rules (E).



Fewer communication links make the swarm more flexible

Our results hint at a counter-intuitive solution to the challenge of operating large scale swarms:

adaptability of the swarm increases as the robots’ communication range decreases (Fig. 3). That

is, interacting with fewer robots at a time can improve the ability of the swarm to disseminate

new information collected locally. We conducted a set of experiments (Fig. 5) with swarms of

50 Kilobots—small robots for collective intelligence studies [62]. When the robots were able to

communicate with any other robot—forming a fully-connected topology—the swarm failed to

adapt its decision to new better sites (Fig. 6). Once the swarm reached a consensus in favour of

one alternative, robots that discovered new sites, even with a better quality than the previous,

were a minority compared with the rest of the swarm. That minority immediately faced a

large majority that quickly reverted its mind. Limiting communication, minorities with better

opinions could gradually gain traction in the population and eventually steer the swarm towards

the correct choice (Fig. 5(C)- 5(F)). Figs. 5(A) and 5(B) show the results from simulated and

physical robot experiments.

While a small number of communication links can bring advantages in terms of better

adaptability, it is important to note that other types of processes can instead benefit from long

communication ranges, or even from no communication whatsoever. Text ST5 and Fig. S3 show

that information spreading speed is maximised in fully connected networks and decreases by

reducing the number of links. Therefore, in processes where no voting among robots is necessary

and information needs to spread quickly, large communication ranges are beneficial. Text ST6

and Fig. S4, instead, show that robots with noiseless sensors can achieve high performances

without communicating with each other. However, both analyses indicate that a swarm of

robots, that rely on noisy sensors and exchange votes to make a collective decision, maximise

the ability to adapt to environmental changes via short range communication. The two proposed

behaviours can also scale up to large number of options. In the experiments of Figs. 5 and 6 we

tested the swarm in collective decisions among up to n = 3 sites. In Text ST7, we run a set of

simulations to test the swarm adaptability in an environment with an increasing the number of

alternative sites, up to n = 9. We show that both behaviours naturally scale to higher number

of options.
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Figure 5: The robot swarm can collectively select the best target site in a dy-
namic environment. (A) Timeseries of six experiments with swarms of 50 Kilobots moni-
toring time-varying environments with a collective behaviour based on the compare rule and
the cross-inhibition pattern (thick lines are the mean, and thin lines are single runs). The
swarm successfully adapts in all three phases: appearance and disappearance of the best site,
and swap of quality between the best and second best site. (B) Similar results are obtained
through physics-based simulations with behaviours based on both the compare (top) and the
resample (bottom) rules (lines are the mean of 100 runs with 95% confidence interval as
shades). (C)-(J) Overhead view of one experiment at salient moments; there are three target
sites—here superimposed on the images as red, green, and blue circles—that can be locally
perceived by robots through augmented reality (ARK [9]). (C) The robots initially have a
full consensus in favour of the previous best site (blue qB = 0.6), when a new better site (red
qR = 0.8) appears. (D) A minority of the swarm discovers the new site. (E) Through local
interactions, the red opinion spreads throughout the robot swarm. (F) The swarm converges
to a consensus for red. (G) The red site disappears. (H) The swarm reverts to a consensus
for blue. (I) The quality of the blue and green sites swap (qB = 0.4 and qG = 0.6). (I) The
swarm once again adapts its decision to the best available site. Full videos are available as
supplementary electronic material in Movie 2.

Value-sensitive collective adaptation

We can further extend our analysis to examine adaptation as a function of option values; the

model predicts a value-sensitive adaptation as shown in Fig. 7. A swarm committed to site Ty



Figure 6: The Kilobot swarm adapts to environmental changes when robots use
short-range communication. Results from 100 simulations, in (A)-(D), and 6 physical
robot experiments, in (E)-(F), with 50 Kilobots with a short (left column) and a long (right
column) communication range. The swarm starts with a consensus in favour of the blue site
(with qB = 0.6) and is expected to adapt to the red site, which has a higher quality qR = 0.8.
Both simulations and physical robot experiments show that the swarm successfully adapts to
changes when robots exchange messages locally (a short communication range grants a 100%
success rate), but fails to reliably adapt when the communication is global. The proportion
of successful adaptations are reported above each scatter plot. A run is considered successful
when the average size of the population committed to red in the last 10 minutes is above
80% quorum (horizontal dashed line). Fluctuations are due to a relatively high level of noise
σq = 0.1 in robots’ estimates of the site qualities. Global communication in the Kilobots is
achieved through a virtual transreceiver implemented via ARK [9] (Text ST12). Videos of the
Kilobot experiments for both conditions (6 repetitions each) are available with the paper in
Movies 2 and 3.

with quality qy will adapt to a new better site Tx depending both on the quality qy and the

difference δ = qx − qy. The minimum quality improvement δ required for adaptation increases

with qy. In other words, the swarm with a consensus in favour of a good location (high qy)

adapts to a better location only if it has a much higher quality (large δ), while adaptation in

swarms with low quality opinions (low qy) also happens for small improvements (small δ). This

value-sensitive mechanism is not directly encoded in the individual agent rules, rather it is the



observed emergent behaviour of the collective (see also Text ST8).

Value-sensitivity has been predicted and observed in a variety of natural systems [29, 30,

63, 64] and engineered in robot swarms [31, 65, 11] in a variety of processes, such as decision

making or foraging. While most work on decision making focuses on accuracy [15, 22, 21],

in which only the best option is rewarded, a value-based metric has a reward dependent on

the chosen option’s quality, independently from it being the best [66]; in such scenarios value-

sensitive decision dynamics can be beneficial [29]. Our observations of value-sensitive collective

adaptation align with previous analysis on costs for switching between options when consensus

for one particular option is already established [67].
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Figure 7: Value-sensitive adaptation emerges. The swarm displays a value-sensitive re-
sponse to environmental changes. This means that a new better site Tx is selected depending
on both the quality of the previous site Ty and the difference δ = qx − qy between the qualities
of Tx and Ty. A consensus for a good site (high qy) is changed only if the quality improvement
is high (high δ). Instead, the swarm is less selective (small δ) when the current site’s quality
qy is low. The grayscale maps show the proportion of 100 multiagent simulations that adapted
within Tmax = 6 · 104 time steps using the compare (A) or the resample (B) exploration rules.
The S=100 agents only implement the social information pattern of cross-inhibition. The su-
perimposed lines are the bifurcation points for the ODE models based on the two alternative
social information patterns.

Discussion

We propose two collective behaviours to allow swarms of minimalistic robots to track the best

target site in a time-varying environment (the dynamic best-of-n problem). Robotic systems

that aim to be deployed in the real world, where real-time changes can be the norm rather

than the exception, need to be able to operate in time-varying environments. Our behaviours



enable the robot swarm to successfully adapt to environmental changes, which can be the

appearance or disappearance of a site, or a change in sites’ qualities. The requirements in

terms of individual robot capabilities are minimal, making the implementation possible even in

simpler robots than the ones used in our experiments, such as organic nanorobots or disposable

devices [4, 5]. Despite the individual simplicity, the swarm is able collectively to track the site

with the highest quality and show a value-sensitive response to changes (Movie 1).

Previous work that investigated simple voting behaviours to reach swarm consensus on

the best option [21] has shown an increase in decision performance, in terms of consensus

speed, when individuals use more social information (a result also confirmed by our analysis

in Texts ST4 and ST5). In particular, they replaced the voter model with the local majority

rule (selection of the most voted site by neighbours). Their study also showed that such

an increase of social information makes the swarm unable to adapt to changing environmental

conditions once a consensus has been reached. Given the importance of adapting to time-varying

environments, we focussed our analysis on mechanisms that allow or prevent the swarm from

effectively adapting the collective decision. Previous theoretical mean-field models based on

the infinite-size assumption, predicted that reducing social information—that is, replacing the

majority rule with the voter model—would facilitate adaptation to the best available site [50,

21]. Finite-size simulations, however, conflicted with this prediction and showed that adaptation

is not possible without strategies that keep the swarm from reaching full consensus (for instance,

by using asocial agents) [22]. In this study, we reconcile theory and application: theoretical

models allow us to understand the adaptation dynamics and design minimal behaviours that

can adapt to changing environments. Physical robot experiments with a swarm of 50 Kilobots

and extensive simulations confirm our findings.

Our analysis shows the counter-intuitive result that reducing the connections between in-

dividuals improves the spreading of localised information, and, in turn, allows an informed

minority to effectively change the opinion of the entire group. This finding is opposed to the

widely accepted and intuitive belief in network science that more connections lead to more

effective information exchange [37, 38, 21, 68, 39, 69]. While information spreading speed may

indeed increase (see Text ST5 and Fig. S3), we show that adaptation—the ability to modify the

group’s belief in light of new information—is impaired. Adaptation can be restored by reduc-

ing the average number of connections per robot; this can be achieved by reducing either the

robot’s communication range or the robot density (see Fig. 3). Through transition rates that



depend on both the swarm density and the size of subpopulations committed to different sites,

we model a form of ‘competition’ among voters that stems from the voter model. The model

is complex but tractable and allows us to study, via bifurcation analysis, the swarm’s ability

to adapt when the sizes of committed subpopulations are unbalanced—that is, when there is

a large majority and a small minority. When robots have a limited number of communication

links, the influence of just a few strongly-opinionated robots (high-quality site) can succeed in

recruiting other robots. Instead, when the communication can happen within large groups—

due, for instance, to a large communication range—the minority’s opinion is suppressed by the

large majority, even when the latter is less opinionated (i.e. when the majority is committed

to a lower quality site). The minority’s inability to spread better information is exacerbated

in largely unbalanced subpopulations (few-vs-many) and vanishes when the two factions have

comparable sizes (Fig. 4).

Our theory is in agreement with observations from previous swarm robotics studies that

investigated the best-of-n problem in dynamic environments. In particular, Prasetyo et al. [22]

showed that adaptation can be obtained by freezing a proportion of the swarm committed to

every inferior site (through so-called stubborn robots). Our model explains the cause of their

empirical observations, as stubborn robots in fact improve adaptability by reducing the imbal-

ance between committed subpopulations (reduce the few-vs-many ratio, see also Text ST16).

Despite the promising results, their solution limits the applicability of the behaviour, because

robots—as in other studies [23]—need prior knowledge of the alternative options (e.g. site lo-

cations). Therefore, these approaches may not scale to scenarios with options that dynamically

appear and disappear. Our solution is more general as it includes the possibility and necessity

of the spontaneous discovery of the options. Balancing the frequency of spontaneous discovery

and social interactions is crucial to achieve coordinated responses to environmental changes in

collective systems [39, 70, 71, 72, 20]. Again, our model is now able to explain the mechanisms

from previous empirical observations. For instance, we previously documented that relatively

frequent social interactions speed up the decision but reduce the ability of the swarm to modify

its decision once a consensus for an inferior option is made [20]. The best empirically-found

solution comprised a first phase with spontaneous discovery only, and a second phase of social

interactions. Retrospectively, we can now understand the mechanism that is at the source of

the success of such a collective behaviour; it allows the swarm to split into committed subpop-

ulations of comparable sizes before triggering quick consensus. Additionally, we would like to



reiterate the importance of having an adaptable system, as adaptation can act as a means of

correction of earlier mistakes, and have a dramatic impact on accuracy. In summary, existing

solutions achieved adaptability by avoiding largely unbalanced distributions of opinions in the

population. Our understanding of the model allowed us to also propose alternative strate-

gies, for instance, the communication range reduction, that allow adaptability even in case of

extremely unbalanced starting conditions.

Our work has the potential to impact on various disciplines. The investigated problem—

that is, how an opinionated minority can spread its opinion throughout a large population

that holds a different belief—is relevant in biology [73], social sciences [74], and swarm robotics

[75]. The underlying mechanism of our collective behaviour—that is, individuals have social

interactions based on the voter model [28]—is also widely employed to model opinion dynamics

in humans [76], collective behaviour of animals [77], and natural evolution in ecosystems [78],

as well as to design robot swarms [10]. The results are not limited to the voter model, as we

also tested collective behaviours with social interactions based on the local majority rule and

observed the same dynamics (Text ST4). The number of communication links per individual

determines when a more-opinionated minority is able to persuade a less-opinionated majority.

We conjecture that any voting system, in which probability of adoption of an opinion by a

voter is a sublinearly increasing function of its representation amongst the voter’s neighbours,

will exhibit the less is more pattern reported here. Reducing the interaction range at the

individual level to collectively adapt to changes is a cheap solution that might be exploited by

both natural and artificial swarms. Recent studies have indeed observed that animal groups

reduce their interaction network to effectively respond to environmental changes [45, 44]. The

behaviours proposed in this study also have similarities with the decision-making behaviour of

social insects in terms of quality-dependent communication protocols [48, 49] and individual

rules to adapt to environmental changes [79]. While it has been shown that direct comparison

of alternatives is not necessary to reach a consensus in favour of the best site [53, 80], it remains

unclear in which contexts an experience-dependent filtering—similar to our compare rule—is

adopted by individual insects when reconsidering their choice [51, 81]. While more demanding

at the cognitive level, the compare rule shows better performance than the cognitively-simpler

resample in terms of both adaptation speed and robustness to parameter variations (Fig.

3(B,D) and Texts ST3, ST8). In the same way, when the individuals have more capabilities to

process more social information via the local majority rule, the swarm adapts faster (Text ST4).



Our study therefore shows a link between the collective performance and the individual cognitive

abilities, in terms both of environmental sampling and social interactions.

The simplicity of our approach is one of its strengths as it reduces the complexity at both

the individual level, granting a wider applicability, and at the group level, allowing a better

understanding of the emergent dynamics. The performance of our behaviours can be improved

by increasing the requirements at the individual level. Robots capable of storing probabilities

on multiple opinions and updating them recursively could improve the accuracy and speed of

collective decisions [14, 15, 17, 18]. Recent theoretical analysis has also shown that distributed

learning by computationally more demanding agents can benefit from limited communication

[82]. It will be interesting to test how the same mechanism can be applied to a robot swarm.

The exploration of the environment could also be made more efficient by replacing the diffu-

sive random walk with more elaborated collective search strategies [83, 84] that, for example,

use Lévy walks and larger individual memory [85], or include a constant probability to re-

turn to a site and re-estimate its quality [86]. Furthermore, we can envision that the use of a

time-varying communication range—varied by individual robots that increase and decrease it

depending on how old or new their environmental information is—could further improve the

collective behaviour. Such a solution could exploit the benefits of both a quick consensus by

highly connected individuals, and effective adaptation to environmental changes by individuals

that reduce their response to social influence when they have recent information. Temporarily

exploiting more knowledgeable individuals by modifying the communication network is an effec-

tive strategy that provides adaptive benefits in animal groups [87, 88] and could be ‘exported’

to engineered solutions. However, even without such refinements, a simple strategy of less is

more allows for sophisticated group adaptation in time-varying environments.

Materials and methods

Formalisation of collective adaptation in a time-varying environment

The robot swarm operates in an environment E that is a plane with n target sites that can vary

over time. A target site Ti is characterised by its location Li ∈ E and its quality qi ∈ [0, 1].

When Li is within the robot’s sensing range re, the robot can individually estimate the site’s

quality q̂i ∼ N (qi, σq) with noise σq, truncated to line in the interval [0, 1]. We investigate three

types of sudden and instantaneous environmental changes: firstly, a new site appears with a



higher quality than any other site in the environment, secondly, the best site disappears, or

thirdly, the best and the second-best sites switch their quality. The robot swarm is tasked to

react to these changes and to always converge to a consensus in favour of the currently best

target site in the environment. We consider the swarm to have adapted to the best site Ti when

the average size of subpopulation Si committed to Ti in the last 5000 temporal steps is above

the quorum of 80%. We choose this metric to avoid counting random fluctuations as decisions

(see Text ST9), as this could impair the subsequent phase of decentralised measuring of the

decision state [89, 90, 91].

Individual behaviour for a collective response

Robots combine environmental exploration with social interactions in order to reach agreement

with others on the best site. Each robot uses the information that it obtained through explo-

ration and interactions, to iteratively update its commitment state—every 2 seconds—through

the finite state machines of Fig. 2. Robots in any commitment state explore the environment,

except for the robots in the polling state which move towards the site they have been recruited

to.

Environmental exploration is implemented through random diffusion on the plane E in

order to allow robots to both discover target sites and change their interaction neighbourhood.

Agent mobility is important as limited mobility can jeopardise the ability to reach a consensus

[31, 92, 93]. In the Kilobots, we implemented the random diffusion via the random waypoint

mobility model [94] (see further details in Text ST2).

Social interactions consist of the exchange of messages between neighbouring robots which

are within the range of communication rs. Robots committed to site Ti send their message

every 500ms with probability equal to the estimated quality q̂i. The message only contains the

location Li of the site Ti, but not q̂i. Therefore, robots that receive a recruitment message and

change their commitment state do not know the value of q̂i. These robots change their state

to polling during which they do not communicate, as they lack information about the site’s

quality. Polling robots move through a biased random walk towards the most frequently voted

site. Once the target site is reached, they estimate q̂i, change their state to committed, and start

to periodically broadcast their vote message (Fig. 2(C)). Therefore, both polling and committed

robots have an opinion in favour of one site, however the former do not broadcast their opinion

while the latter do. We differentiate these two states in terms of individual behaviour, as shown



in Fig. 2(A), however, we count both populations when measuring the collective opinion and

swarm consensus.

Adaptability is obtained by allowing robots to integrate new information from the environ-

ment after they have committed to a site. The robot changes its commitment in favour of a

new site Ti that is discovered through exploration with probability d ∝ q̂i. The relationship

between the probability d and the site’s quality q̂i favours the selection of the best site and is

determined by the function f(q̂i), which in our experiments we set as f(q̂i) = q̂i, as q̂i ∈ [0, 1].

Through the compare rule, a robot committed to Tj makes this probabilistic change of com-

mitment only if the new site’s quality q̂i is better than q̂j, i.e., q̂i > q̂j + ǫ. The parameter ǫ

sets the minimum difference for which adaptation is worthwhile (see Fig. S1(A)), as changing

consensus may have a cost [67]. Therefore, the resulting probability of discovering a new site

Tj is d = f(q̂i)H(q̂i + ǫ− q̂j), where H is the Heaviside step function. Through the resample

rule, instead, a committed robot considers new environmental information with a constant

probability α. Therefore, when a committed robot encounters site Ti, the total probability of

committing to it is d = α f(q̂i). The probability term α balances the trade-off between a large

stable consensus and the ability to react to changes (see Fig. S1(B)). A small α makes the

robots’ use of new information from the environment rare, whereas a high α makes the swarm

more undecided and the consensus subject to large fluctuations.

Kilobot augmented reality experiments

Kilobots are simple robots widely employed for studies of collective robotics and swarm intelli-

gence [62, 95, 96, 21, 65, 97]. Kilobots move on a plane by modulating the vibration frequency

of two motors. The robot moves forward at a speed of about ν = 1 cm/s and rotates at about

40 ◦/s. The robots communicate with one another via infrared messages of 9 bytes. The maxi-

mum communication range is about rs = 10 cm. Finally, the Kilobot has an RGB LED light to

show us its internal state, in our case its commitment. The Kilobots’ capabilities are increased

by the Augmented Reality for Kilobot (ARK) system [9] that is described in Text ST10.

In our experiments, the Kilobots are augmented via two virtual sensors: a position and a site

sensor. Through the position virtual sensor (see implementation details in Text ST11), polling

robots use their location and orientation to effectively move to the target sites they want to

estimate. Robots also use the position sensor to perform random waypoint exploration and to

avoid collisions with the boundary walls. While we resort to the position sensor, efficient robot



navigation can also be attained with other methods that do not rely on any global positioning

system, such as social odometry [98] or self-organised navigation [99]. Through the site virtual

sensor, instead, robots estimate the site’s quality q̂i ∼ N (qi, σq) when the site’s location is

within the perception range re = 0.2m of the robot’s virtual sensor. When the quality estimate

is outside the sensing range [0, 1], the estimate q̂i is set to the nearest boundary value. While

in local communication experiments (rs = 10 cm), robots exchange messages via an onboard

infrared transreceiver, in the experiments with the global communication range, the Kilobots

are also equipped with a virtual transreceiver to exchange messages with the entire swarm as

illustrated in detail in Text ST12.

Simulators

We analysed the effect of the various parameters of the system through simulations at two levels

of abstraction: self-propelled particles and accurate physics-based models. In the former, robots

are modelled as point-size agents that move in a 2D space with periodic boundary conditions.

Movement and communication is synchronous and noiseless, rotation in place is instantaneous,

and collisions are not taken into consideration. The multiagent simulation is not tailored to the

specific robotic platform we use, the Kilobot, but rather describes a generic and simplified agent

with capabilities equivalent to our robots. The physics-based simulation, instead, accurately

simulates the Kilobot’s sensors and actuators, as well as collision and friction between embodied

robots. The Kilobots and the ARK systems are both simulated through a dedicated plug-in

for ARGoS [100], which is a fast and accurate simulator for swarm robotics. ARGoS has been

configured to simulate noise in motion and communication that quantitatively matches with the

noise of the real Kilobots [100]. Additionally, ARGoS uses the identical code that runs on the

robot, which improves the fidelity of the simulations and facilitates testing and development.

All simulation and robot code is available with the paper [101].

Implementing the same behaviour at two or more levels of abstraction is best practice for

the analysis of collective systems. In fact, collective systems are typically difficult to model and

fully understand. The effect of certain parameters on swarm dynamics can be counter-intuitive

(as this study shows) and modelling assumptions may hide emerging patterns (as for infinite-

size approximations, for example). Therefore, the implementation of the same behaviour at

various levels of complexity can help in the understanding of the system and the generality of

the obtained results.



Experimental setup

We conducted a series of experiments to understand the robot swarm behaviour and vali-

date the modelling results. Experiments in simulation used parameters that agree with the

real counterpart tested with the Kilobots (e.g., motion speed ν = 1 cm/s, environment size

E = 1 × 1m2, sensing range re = 20 cm, communication range rs = 10 cm). All parameters

are indicated and discussed in Text ST13; here for completeness we only briefly report an

overview of the parameters and their values. The environment includes n = 3 target sites with

quality {qx, qy, qz} = {0.8, 0.7, 0.1} for multiagent simulations and {qx, qy, qz} = {0.8, 0.6, 0.4}

for robot experiments, if not indicated otherwise. In both multiagent simulations and robot

experiments, noise in individual estimates is relatively high: σq = 0.1 (see inset of Fig. 1(B)).

Exploration rules’ parameters are ǫ = 0.05 and α = 0.01 for the compare and resample rule,

respectively. In the multiagent simulations, the three events of appearance, disappearance, and

quality-exchange have been studied in isolation with dedicated experiments. Instead, the robot

experiments are long demonstrations (80 minutes, Fig. 5) comprising three phases, in each of

which an environmental change occurs (see Text ST13).

Dynamical systems analysis

The collective behaviours that we investigate in this study comprise of one exploration rule

among compare and resample, and one social interaction pattern among direct-switching and

the cross-inhibition. The combination of exploration rules and social interaction patterns lead

to four distinct, yet related, systems of ODEs which describe the behaviour of the robots. The

ODE systems describe the macroscopic dynamics of swarm subpopulations committed to the

different sites. In Text ST14, we formulate a system of ODEs for each of the four investigated

behaviours. These models significantly simplify when describe the collective adaptation process.

The simpler models allow us to compute the bifurcation point as a function of the system’s

parameters, as detailed in Text ST15. Here, we report the simplified models that describe the

adaptation process.

Let S be the swarm size. Let x and y be the fraction of robots committed to the new best

and the previously best target sites, with quality qx and qy, respectively. Also, let z be the

fraction of polling robots. Our system has finite size (that is, a constant number of robots),

therefore we have x+ y + z = 1 for the cross-inhibition patterns, and x+ y = 1 for the direct-

switching pattern (as z = 0). This implies, that in case of adaptation, the dynamics reduces



to one dimension in case of direct-switching and to two dimensions for cross-inhibition. In

particular,

• For compare with direct-switching

ẋ = k π r2e qx y +
k π r2s S y

1 + k π r2s S y
qx x−

k π r2s S x

1 + k π r2s S x
qy y. (1)

• For compare with cross-inhibition

ẋ = k π r2e qx y + γ
k π r2s S z

1 + k π r2s S z
qx x−

k π r2s S x

1 + k π r2s S x
qy y

ẏ = −k π r2e qx y + γ
k π r2s S z

1 + k π r2s S z
qy y −

k π r2s S y

1 + k π r2s S y
qx x. (2)

• For resample with direct-switching

ẋ = k π r2e α qx y − k π r2e α qy x+
k π r2s S y

1 + k π r2s S y
qx x−

k π r2s S x

1 + k π r2s S x
qy y. (3)

• For resample with cross-inhibition

ẋ = k π r2e α qx y − k π r2e α qy x+ γ
k π r2s S z

1 + k π r2s S z
qx x−

k π r2s S x

1 + k π r2s S x
qy y

ẏ = k π r2eα qy x− k π r2e α qx y + γ
k π r2s S z

1 + k π r2s S z
qy y −

k π r2s S y

1 + k π r2s S y
qx x. (4)

In these equations, α is a proportionality constant representing the rate at which committed

robots resample; γ is the proportion of polling robots which get committed to a target site;

and k is a proportionality constant for the probability per unit time of a robot encountering

a target site or being in communication range with another robot. These probabilities can

be expressed as Pe = kπr2e and Pm = kπr2s , respectively. In our model, the proportionality

constant k depends on factors such as the speed of motion of the robots and their movement

patterns, and is indicative of the speed of the collective dynamics. Full details on the derivation

and analysis of the models are available in Texts ST14, ST15, and ST16; we also include with

the paper a Jupyter notebook to reproduce our analytical results [101].
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Supplementary Material

ST1. Comparison with other behaviours

In the literature, the problem of collective decision making to reach an agreement in robot

swarms has been extensively investigated (e.g. see review in [10]). Our study advances the

state of the art by proposing and analysing behaviours of minimalistic robots in a time-varying

environment. The two main aspects that allow us to make a clear distinction between the

investigated behaviours from previous works are (i) the individual robot’s requirement and

(ii) the possibility to operate in unknown time-varying environments. Here, we expand the

discussion of the main text to detail the unique aspects of our study, and compare our behaviours

with the state of the art.

ST1.i Comparison in terms of individual robot’s requirement

When comparing robots’ algorithms, it is also important to consider the requirements and

assumptions on which they are built. There are works that obtain high swarm performance

by relying on skilled individual robots that apply sophisticated algorithms to filter and aggre-

gate environmental information [14, 15, 16, 17, 18]. However, our focus is on algorithms for

extremely simple machines thats are highly limited in memory, communication, and computa-

tion. Algorithms that can work with such constraints are based on probabilistic rules that give

sub-optimal perfomance measured in statistical terms. The few works [21, 20] that presented

behaviours with individual-level requirements that match our constraints are the basis of the

behaviour that we presented. Those behaviours in their original form are not able (as indicated

in the literature [22]) to adapt to changes in the environment. Therefore, we modified the be-

haviours by adding two alternative exporation rules—compare and resample—that make the

swarm capable of adaptation. We provide extensive analysis, numerous results, and detailed

discussion on the comparison of the performance of two exploration rules in different conditions.

Collective behaviours that require additional individual capabilities, yet are relatively sim-

plistic, are behaviours based on the local majority rule [21]. Previous work has shown that

through this rule the swarm can improve its performance in terms of consensus speed. In order

to test the generality of our results on adaptability, in Text ST4 we modify our behaviours to

include the local majority rule. As discussed in Text ST4, we obtain qualitative similar results

that confirm the general scope of our findings.



ST1.ii Comparison in terms of prior knowledge assumptions

Previous algorithms, that can adapt to environmental changes using low individual requirements

[23, 24, 22, 25], cannot cope with an unknown number of options, that appear and disappear,

as in our study. In fact, in the literature, the only type of environmental change that has been

investigated is the change in option qualities. The state of the art algorithms are limited to

operate for binary decisions and require prior knowledge of the environment. The robots are

programmed with information about the options [23] or their location [24, 22, 25], and are only

tasked with agreeing on the option with the highest quality. Therefore, these algorithms cannot

work in an environment with a time-varying number of options that can unexpectedly appear

or disappear. An integral component of our algorithm is the environmental exploration and

individual discovery of unforeseen changes. As previous algorithms have not been designed to

operate in the type of scenarios that we investigate in this paper, we focus our comparison on

the algorithms proposed in this study. We conduct a performance comparison of two alternative

exporation rules—compare and resample—, as well as we include the analysis of two alternative

interaction patterns—direct switching and cross-inhibition—to show that our results generalise

to a larger class of behaviours.

ST2. Individual robots’ algorithm

Each robot moves in the environment and updates its commitment state by executing the

Algorithm SA1 (which is also reported in Fig. 2(C) in the main text). Both committed and un-

committed robots move randomly to explore the environment. The mobility model for random

exploration that we implemented is the random waypoint mobility model [94]. Through this

mobility model, the robot selects a random position in the environment, which it sets as its

target destination Lt. Once the robot reaches Lt, it selects a new random target destination.

The robot avoid collision with the boundary walls by selecting random destinations that are at

least two robot-body lengths (approximately 7 cm) far from the walls. The robots do not have

any proximity sensor, therefore they do not implement any obstacle avoidance manoeuvre to

prevent collisions with each other. To avoid robots remaining stuck for a long time in traffic

jams caused by groups of robots moving in opposite directions, or robots not moving due to

malfunctioning motors, the robot selects a new random target destination if Lt is not reached

within 2 minutes (i.e. about the double of the time necessary to traverse the entire environment

in a collision-free situation).



Robots in the polling state do not perform random exploration but move towards the last

site location Lv received from the neighbours. Every two seconds the information about Lv

is updated with the latest vote message, and the target destination is set with the new value:

Lt ← Lv. In this way, the polling robot follows a biased random walk that ends when the site

is reached. At the site Tv, the robot estimates the site’s quality qv and becomes committed to

site Tv, as both site’s location Lv and quality qv are stored in the robot’s memory Lm and qm,

respectively. Committed robots resume random exploration.

Due to the limited capabilities of the Kilobot, some of the sensors are virtualised through

the system of Augmented Reality for Kilobots (ARK [9]). The virtual sensor readings are

updated every 5 ∼ 6 seconds. See further details in the Texts ST10, ST11, and ST12. All

simulation and robot code is available with the paper [101].



SA1 Algorithm: Individual robot’s algorithm, repeated every control cycle (∼ 30Hz)
Opinion variables: site Tm’s location Lm; site Tm’s quality qm
Navigation variables: target destination Lt

Sensors’ parameters: sensing range re; communication range rs
resample rule parameters: resampling probability α

compare rule parameters: minimum difference ǫ

Sensors’ readings
q̂e ← site Te ’s quality estimate ∼ N (qe, σq) ∈ [0, 1] every time Te is within range re
Lv ← incoming vote message from neighbour in range rs
(Lr, θr)← current robot’s location Lr and orientation θr, updated every 5 ∼ 6 s

# # # # # # PROCESS ENVIRONMENTAL INFORMATION # # # # # #

if site Te’s location Le is within robot’s sensing range re then

if Le 6= Lm then # encountered new site
With probability: α # condition tested only for resample rule
if q̂e > qm + ǫ then # condition tested only for compare rule

With probability q̂e
Lm ← Le; qm ← q̂e # Store environmental information about site Te

end

end

else
qm ← q̂e # resampling site Tm’s quality

end

end

# # # # # # PROCESS SOCIAL INFORMATION # # # # # #

Every 2 s
if Lv 6= ∅ and Lv 6= Lm then

Lm ← Lv # Store social information about site Tv
qm ← 0; Lt ← Lv # Go to resample quality qv

end

end

# # # # # # VOTING # # # # # #

Every 500ms
With probability qm

broadcast a vote for Tm to neighbour robots within communication range rs
end

end

# # # # # # NAVIGATION # # # # # #

use (Lr, θr) to move towards target destination Lt

if Lr == Lt then # Target position reached
Lt ← new random destination # Random waypoint mobility model

end

ST3. Effects of the exploration rule parameters on the collective
behaviour

We investigate the sensitivity of exploration rules compare and resample to the parameters ǫ

and α, respectively. As desired, ǫ sets the minimum difference that the swarm should consider

for adapting to a new site. Figure S1(A) shows the swarm response for three values of ǫ ∈

{0.05, 0.15, 0.25}.

A similar effect can be obtained through modulation of the parameter α in behaviours

that use the resample exploration rule (Fig. S1(B)). However, a miss-parameterisation of the

behaviour may lead to undesired dynamics. Excessively high values of α can leave the system



below quorum and unable to attain a sustained agreement in favour of any site, when the sites

have similar qualities. See for instance α = 0.4 in Fig. S1(B). Instead, for values of α that

are too low, robots resample option in extremely rare occasions, therefore adaptation becomes

very slow. For instance, in Fig. S1(B), behaviours that used α = 10−4 rarely adapted within

Tmax = 6 · 104 time steps.
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Figure S1: Through multiagent simulations (100 runs per condition) we study the sensitivity
to parameters ǫ (in (A)) and α (in (B)) for the exploration rule compare and resample, re-
spectively. We report the proportion of multiagent simulations (with S = 100 noiseless agents,
σq = 0, initialised with commitment to site Ty with qy = 0.5) that adapted to site Tx with
quality qx = qy + δ. Difference δ is varied on the x-axis.

ST4. Generalisation of the results to other mechanisms of sampling
neighbours’ opinions

Here, we test if the reported results can generalise to other simple decentralised mechanisms

to sample neighbours’ opinions that are different from the voter model, which we investigated

in the main text. Through the voter model [28], the robot selects one random message among

the messages received from its neighbours (in our implementation, it selects the last message

received). We replace the voter model mechanism with the local majority rule [104]. Through

this rule, the robot combines all the votes from its neighbours, including its own vote, and

change opinion using the vote that is more frequent (in case of a tie, it makes a random choice).

The local majority rule requires more capabilities at the individual level than the voter model,

as the robot needs to store the received messages, count the received votes for each site, and

select the highest count. While more demanding, it has been shown that the local majority



Figure S2: We replaced the voter model with the local majority rule and we obtain qualitatively
similar results to Fig. 3. We report results the adaptation probability (i.e. the proportion of
100 runs that adapted within Tmax = 6 · 104 time steps) and adaptation time. We use the
same experimental setup of Fig. 3. For both exploration rules (compare and resample), the
swarm has an improved performance in terms of collective adaptation for a relatively low
number of communication links 〈k〉. The communication links decrease by decreasing the
robots’ communication range rs or the swarm size S (as shown in the inset).

rule can also give better performances than the voter model in terms of consensus speed [21],

as it will be also confirmed by our results. The cause of such a performance improvement is

the processing of more social information (by applying the local majority rule).

In our study, we replace test the local majority rule to assess the generality of the main

results of our paper, that is, ‘less is more’. Fig. S2 shows that also in this case a lower number

of communication links (less) corresponds to an increase (more) of the collective performance

in terms of adaptation ability. The investigated scenario is the same of Fig. 3: the environment

has three sites Tx, Ty, and Tz with qualities {qx, qy, qz} = {0.8, 0.7, 0.1} and the swarm starts

committed to the site Ty (see simulation details in Fig. 3 and in Text ST13). Both the prob-

ability that the swarm will adapt to Ty and the adaptation speed increased for relatively low

communication ranges rs, or in scenarios with low robot density (small swarm sizes S).

Note that, compared with the voter model (Fig. 3), the local majority rule relies on a higher

amount of social information and thus has quicker dynamics in terms of speed.



ST5. Information spreading trade-off

Our study shows the benefits of limited communication in terms of better adaptability to

environmental changes. While a small number of communication links can bring the advantages

of better adaptability as illustrated in the main paper, it is well documented and common

knowledge that information can spread quicker in highly connected networks. Therefore, we

conduct a set of tests to measure information spreading in our experimental scenario.

We ran multiagent simulations in the same scenario we investigated in Fig. 3 for values of

communication range re ∈ {0, 0.05, . . . , 0.5} and level of noise σq = 0.1. In this scenario, the

robot swarm is fully committed to site Ty with quality qy = 0.7 and at time t = 0 a new better

site Tx with qx = 0.8 appears. Fig. 3 shows the adaptation probability and adaptation time.

These two metrics measure with what probability and how quickly the swarm adapted. We

consider a swarm has adapted when the average size of the subpopulation committed to Tx in

the last 5000 temporal steps is above the quorum of 80%. The adaptation probability is the

proportion of runs that adapted over the total number of simulations, while the adaptation

time is the time from t = 0 in order reach adaptation. Fig. S3 shows a different metric from

Fig. 3. Fig. S3 shows the probability that a new piece of information spreads throughout the

swarm, as well as the spreading speed. The piece of information that spreads is the individual

discovery of the new site Tx. This information is shared among robots and can either spread

throughout the majority of the population or be suppressed by the subpopulation committed

to Ty. Every time the subpopulation Sx committed to Tx vanishes (i.e. it has size zero), we

consider it as an information spreading failure. Instead, when Sx reaches the quorum of 80%

of the total swarm S, we consider it as an information spreading success. The information

spreading probability reported in Fig. S3 is computed as the proportion of successes over the

number of attempts (successes+failures). The information spreading time is computed as the

average time from the individual discovery to the reaching of the quorum.

Fig. S3 shows that there exists a trade-off between information spreading speed and in-

formation spreading probability. On the one hand, large communication ranges form highly

connected networks that can quickly spread information but only rarely they are successful.

On the other hand, information spreading in sparse networks formed by robots with low com-

munication ranges is slow but information eventually spreads throughout the population with

a low failure rate.
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Figure S3: Through multiagent simulations (103 runs per condition) we study how quickly and
how effectively information spread throughout the population for different communication range
values. S = 50 robots start committed to the inferior site Ty (with qy = 0.7) and new better
site Tx with qx = 0.8 appears. The individual discovery of the new site has higher probabilities
to spread when robots communicate in a local range but it happens slower. Instead, when
the communication range is large, information can spread quickly but most of the times the
spreading is unsuccessful. See discussion in Text ST5.

ST6. The impact of noise in the individual estimations

Physical sensor-based estimation noise is unavoidable. When a robot makes its individual esti-

mate q̂i of a site Ti, we model q̂i as a stochastic variable with a normal probability distribution

centred on the true quality value qi and with standard deviation σq. That is, q̂i ∼ N (qi, σq).

We test our behaviours for different levels of noise σq ∈ {0, 0.05, . . . , 0.25}. Fig. S3 shows im-

portant results that are useful to understand the benefit of the proposed strategies. The results

indicate, in fact, that when the noise is absent and all robots make correct quality estimates,

then the robots can effectively, and efficiently, solve the best-of-n problem individually and

communication is not necessary. Without the use of communication (for rs = 0), the swarm

can always adapt (100% adaptation) with the quickest adaptation time. However, when robots

make noisy individual estimates, the non-communicating robots have a drastic decrease in the

collective performance and the swarm is unable to reach a consensus in favour of the best site.

Instead, through local communication, the swarm can make accurate decisions regardless of

the noise level. Fig. S3 shows that, through intra-robot communication, the swarm collectively

filters the noise, and accurate collective decisions are made. Note that for all tested values of



noise, large communication ranges impede adaptation; a result in agreement with Fig. 3 in the

main text and, in general, with the main message of the paper: less is more. Noise in physical

sensors is unavoidable, especially in simple machines for which we designed our behaviours.

Our collective behaviours, based on low-range communication, are effective solutions to achieve

swarm adaptation.

0

0.1

0.2

0.3

0.4

0.5

Co
m

m
un

ic
at

io
n 

ra
ng

e 
r s

Co
m

pa
re

 ru
le

(A)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Adaptation probability

(B)

1 10 ≥ 50

Adaptation time (timestep ×103)

0 0.05 0.1 0.15 0.2 0.25
Noise σq

0

0.1

0.2

0.3

0.4

0.5

Co
m

m
un

ic
at

io
n 

ra
ng

e 
r s

Re
sa

m
pl

e 
ru

le

(C)

0 0.05 0.1 0.15 0.2 0.25
Noise σq

(D)

Figure S4: In the same scenario of Fig. 3, through multiagent simulations (100 runs per condi-
tion) we study adaptation probability and average speed for different levels of noise σq, When
individual robots make noisy estimates of the site’s quality they benefit from communicating
with each other.

ST7. Scalability to large numbers of options

Differently from most works in the literature that limit their investigation to binary decision

problems (n = 2), the behaviours that we propose and analyse in this paper can scale to large

numbers of alternatives (n ≥ 2). In the main text, we report extensive analysis of experiments

with n = 3 alternative sites. Here, we include additional results of multiagent simulations with



up to n = 9 sites. The experiments have been designed as follows. A swarm of 50 uncommitted

robots starts operating in an environment with two sites—T1 and T2—with qualities q1 = 0.1

and q2 = 0.2, respectively. With regular frequency, every τ = 5 × 104 timesteps, a new site

Ti appears with quality qi higher by 0.1 of the previous highest quality. We add sites to reach

up to 9 sites in the environment with qualities {q1, q2, ..., q9} = {0.1, 0.2, ..., 0.9}. Fig. S5 shows

that both behaviours—based on the compare and resample rules—are able to monitor the

environment and adapt to all the 7 changes with probability close to 100%.

Figure S5: Change over time of the subpopulations committed to the n = 9 sites (mean
subpopulation sizes for 100 multiagent simulations with 95% confidence interval as shades). At
the beginning of the experiment, the environment has two sites. Every τ = 5 × 104, a new
site with better quality appears. On top of each of the eight phases (separated by vertical
dashed lines), there are the sites’ qualities represented as Gaussian distributions with standard
deviation equal to sensing noise σq = 0.1. The numbers superimposed on the plot indicate the
proportion of runs in which the subpopulation committed to the best site was above the 80%
quorum (horizontal dashed line) τ timesteps after the best site appeared. Almost always the
swarm adapts to the best site for both exploration rules.

ST8. The cost-performance trade-off of two exploration rules

Depending on the application scenario and its requirements, the designer can make an informed

choice: if adaptation speed is a critical factor, compare should be preferred, otherwise if indi-

vidual simplicity is a key requirement, the resample rule is better. Note, however, that the

dynamics of a swarm that uses the resample rule are influenced by the resampling probability

α which therefore needs values in an appropriate range to successfully operate in a given sce-



nario (see Fig. S1(B)). The compare rule instead is more effective and its parameter sets the

minimum quality difference to trigger a response (see Fig. S1(A)). It is interesting to note the

following point: while individual robots have a response to new sites that is insensitive to its

site’s quality value qy and only depends on the quality difference δ = qx − qy, instead, at the

swarm level, value-sensitivity emerges, with adaptation that depends on both the value and the

difference, as shown in Fig. 7.

ST9. Detecting a stable consensus can be useful for decentralised
quorum sensing

Rather than casting a decision as soon as the quorum threshold is reached, we instead decided to

measure when sustained agreement is maintained over a long time period (that is, average size of

committed subpopulation in the last 5000 temporal steps is above 80% quorum). In this way, we

avoid miscounting random fluctuations in our measure of collective adaptability. The consensus

must be stable in order not to impair the computation of the collective decision outcome in real

applications. The swarm decision is in fact distributed in the form of individual commitment

among the robots, and, in order to reliably ‘aggregate’ the collective decision outcome, the

consensus must be stable during the aggregation process. The individual commitment can be

aggregated by the robot themselves, for instance, through algorithms for decentralised quorum

sensing [89, 90], or by an external user, for instance, a person coordinating search-and-rescue

operations [91] (Fig. 1(A) in the main text).

ST10. The Augmented Reality for Kilobot (ARK)

The Kilobots’ capabilities are increased by the Augmented Reality for Kilobots (ARK) system

[9]. A matrix of 2 × 2 cameras track the position, orientation, and LED colour of the 50

Kilobots in real time (7 fps). The virtual environment composed of target sites is simulated

in the PC acting as the base control station of ARK. The control station updates the state

of the virtual environment and the values of the virtual sensors of each Kilobot. The sensor

readings are communicated to the robot every 5 seconds. The data are transferred to the

robots via overhead controllers that broadcast infrared messages to the robots. ARK updates

the state of all the robots in about 1 second. This transmission can interfere with the intra-

robot communication which is also based on the same infrared channel. Therefore, during the

update of the virtual sensors, the communication among robots is temporarily disabled. ARK



also allows us to program and set up the robots, as well as to record the video and log the

timeseries of the robots’ states (see Movie 2 and 3). In addition, the motors of the Kilobots have

been periodically re-calibrated, between repetitions, through the ARK’s automated calibration

routine.

ST11. Virtualisation of the global positioning system

The robots know their location and orientation through a position virtual sensor. The sensor

readings are updated every 5 ∼ 6 seconds, which is enough to allow the robots to effectively

navigate the environment. ARK computes the readings of each Kilobot’s position virtual sensor

through real-time camera tracking. The robot’s location is computed as the centre of the tracked

robot’s body. The robot’s orientation is computed comparing the robot’s current location with

its location 1 s earlier. The difference vector indicates the average direction of motion of the

robot in the last second. To reduce tracking noise, ARK stores the direction values computed

in the latest five camera frames and computes the robot’s orientation as the weighted average

of these five directions1. Therefore, both location and orientation are not perfect information

but are subject to noise from the camera tracking.

Additional noise in the position virtual sensor is caused by ARK’s communication protocol

which uses a limited number of bits per message. In all our experiments with Kilobots, the

sensing resolution of the position virtual sensor is 1/16m = 6.25 cm for location and 12 ◦ for

orientation. In order words, ARK sends to the robots their locations as coordinates in a 16×16

grid and orientations as one of the 30 orientation slices, each of which is 12 ◦ wide. The virtual

sensor resolution has been tuned to give a good compromise between ARK’s communication

load (ARK can transmit 2 bytes per robot at 60Hz) and positioning noise. Despite the low

resolution, the robots can effectively move in the environment (e.g. see Movie 2 and 3 with

videos of the robot experiments).

ST12. Virtualisation of a global-range transreceiver

In the experiments with the global communication range (Fig. 6 in the main text), the Kilobots

are equipped with a virtual transreceiver that allows each robot to exchange messages with the

entire swarm. ARK virtualises the global communication among all Kilobots by sending a

message every 2 s containing the number of robots committed to each site (population counts),

1ARK’s code is open source and available at https://github.com/DiODeProject/KilobotArena



the current location, and quality of the sites. The counts do not include polling robots, as

they do not communicate. ARK can compute these counts in real time by tracking the robots’

colour and positions. Kilobots show their commitment state through the colour of their LED.

Robots are labelled as being in the polling state when they change commitment state (change

their LED colour) and have not yet sampled the site’s quality (the site is outside the Kilobot’s

sensing range re). The Kilobot uses the population counts to simulate the reception of the

message from one random robot of the entire swarm. To do so, the robot reduces by one

the size of the population to which it belongs, and multiplies each population count by the

respective site’s quality (as communication frequency is a linear function of the site’s quality).

In this way, the Kilobot computes the expected number of messages that it would receive by

the rest of the population if communication were to happen globally among the entire swarm.

Finally, the Kilobot picks one message at random via a probability weighted by the number of

messages from each subpopulation.

ST13. Parameters of the experimental setup

All experiments have been conducted in a square environment E = 1 × 1m2 and including

n = 3 target sites with quality values that varied among setups, as indicated per case. In

the multiagent simulations, the site’s location was randomly chosen in the environment with a

uniform distribution. In the robot experiments, the sites were placed in random order on the

vertices of a central equilateral triangle (sized 29 cm), to avoid bias of pathological cases in a

limited number of repetitions. Where not differently specified, both multiagent simulations and

robot experiments study collective behaviour in noisy conditions with σq = 0.1. The exploration

rule’s parameters are ǫ = 0.05 and α = 0.01 in the compare and resample rule, respectively.

Simulation used parameters for motion speed ν = 1 cm/s and sensing range re = 20 cm that

agree with the real counterpart (the Kilobots).

We investigated the ability of the swarm to adapt to three types of change events: appear-

ance of a new best site, disappearance of the best site, and exchange of the qualities between

the best and the second best site. In the multiagent simulations, these three events have

been studied in isolation with dedicated experiments. Instead, the robot experiments are long

demonstrations comprising three phases, in each of which an environmental change occurs.

Each demonstration has a total length of 80 minutes.



Appearance of a new best site. We study the situation in which the swarm have reached

a consensus on the best site Ty before a new better site Tx appears (with qx > qy). We simulate

this event by initialising the swarm with a full commitment to Ty and running the experiment

with both Ty and Tx present. In every experiment, there is also a third lower quality site Tz,

with qz < qy. The results reported in Fig. 3 used quality values {qx, qy, qz} = {0.8, 0.7, 0.1}.

Instead, in Fig. 7, the values of qx and qy were systematically varied as indicated on the axes

(with qx = q + δ and qy = q), and qz was kept to 0.1. The experiments with the Kilobots have

studied the case of {qx, qy, qz} = {0.8, 0.6, 0.4}, the results of which are reported in Fig. 5. The

appearance of Ty is studied in the first phase of the demonstration, from minute 0 to 20.

Disappearance of a new best site. We studied the situation in which the best site Tx,

on which the robot reached a consensus, disappears. Therefore, the environment remains with

two sites Ty and Tz (with qy > qz). We simulate this event by initialising the swarm with

a full commitment to Tx and running the experiment with only Ty and Tz present. In both

multiagent and robot experiments, we studied the situation of {qx, qy, qz} = {0.8, 0.6, 0.4}. In

the demonstration with the Kilobots, disappearance is studied in the second phase, in the time

frame from minute 20 to 40 (Fig. 5). The swarm always adapted to the best remaining site Ty.

The reason is that the robots re-sample the quality of the site they are committed to when they

are within sensing range of the site. When the site disappears, their quality estimate will be

therefore updated to the value of zero. With zero quality, the robot does not vote for the site

(zero frequency of communication) and additionally any other site discovered by the robot will

have a better quality. Therefore, when disappearance occurs, adaptation is always achieved.

Quality exchange between the best and the second best site. We studied the situation

in which the best site Ty, on which the robot reached consensus, swaps its quality with the

second best site Tx, resulting in qx > qy > qz. Therefore, we simulate this event by initialising

the swarm with a full commitment to Ty with quality estimates that have been initialised using

quality qx, and running the experiment with {qx, qy, qz} = {0.8, 0.6, 0.4}. The results indicated

the ability of the swarm to always adapt to such situations. This experimental setup is very

similar to the case of appearance, as in both cases robots are initialised with commitment to Ty

and operate in an environment with n = 3 sites Ty with qualities qx > qy > qz. However, there

is the following difference: in the appearance case, robots are initialised with quality estimates



q̂y ∼ N (qy, σq), instead, in the quality swap case, the quality estimate has an higher mean,

q̂y ∼ N (qx, σq), as it simulates a sudden drop in their site Ty’s quality, simultaneous to the

sudden increase of qx. In the demonstration with the Kilobots, the quality exchange is studied

in the third phase, from minute 40 to 80 (Fig. 5).

ST14. Derivation of the mathematical models

At any point in time, let there be n target sites in the environment indexed by Ti where

i ∈ {1, . . . , n}. Let Si be the number of robots committed to Ti, Sp be the number of polling

robots, and Su be the number of uncommitted robots. As the time progresses, the dynamical

variables Si, Sp and Su change due to exploration (which is governed by the exploration rule)

and social interactions (which are governed by the social interaction patterns). If we define

FER
i and GSIP

i to be the rates of change of a subpopulation Si due to exploration and social

interactions respectively, then

Ṡi = FER
i +GSIP

i , (S1)

where ER = COMP or RES for compare and resample rules respectively, and SIP = DS

or CI for direct-switching and cross-inhibition patterns respectively. The precise form of these

functions also depends on the quality qi of every target site Ti, the probability Pe = k π r2e of

a robot encountering a target site in a unit time, and the probability Pm = k π r2s of a robot

being in communication range with another robot in a unit time (with k as a proportionality

constant).

Regardless of the exploration rule, an uncommitted robot, upon meeting a target site Ti,

commits to it with probability qi. Additionally, robot committed to target site Ti exploring the

environment using the compare rule may switch its opinion to Tj upon meeting the site with a

probability equal to qj if qj > qi. Similarly, if qi > qj, a robot may switch its opinion from Tj

to Ti with probability qi. Therefore,

FCOMP

i = Pe qi Su +
∑

j 6=i

(Pe Hi,j qi Sj − Pe Hj,i qj Si) (S2)

where, Hi,j = 1 if qi > qj and 0 otherwise (we assume the compare parameter ǫ = 0). By

using the resample rule, a fixed fraction α of all committed robots may switch their opinion

on encountering a different target site with probability equal to its quality. Hence,

FRES

i = Pe qi Su +
∑

j 6=i

(Pe α qi Sj − Pe α qj Si) . (S3)



All interactions between two robots belonging to different subpopulations result in either no

change in the subpopulation dynamics or one robot (recruiter) changing the commitment of the

other robot (recruitee). As discussed in the Results section, the mean rate of recruitment non-

linearly depends on the number of recruitees in the system due to the voter model (Fig. 4(A)).

In particular, for a subpopulation of Sx recruiters and Sy recruitees, we use the Holling Type

II function [59] to model the rate of recruitment as,

R =
PmSy

1 + PmSY

qxSx, (S4)

where qx is the quality of the target site Tx to which the Sx recruiters are committed. The

equation demonstrates that the rate of recruitment is proportional to the Sy if Sy ≪ Pm and

is independent of Sy if Sy ≫ Pm. We use this functional form to model interactions between

the robots hereafter.

An interaction of a committed robot with an uncommitted robot can lead to the uncom-

mitted robot becoming committed. Moreover, if the robots interact using the direct-switching

pattern, there are no polling robots, i.e., Sp = 0. When a robot from subpopulation Si meets

a robot from subpopulation Sj, either of the robots may switch to the other subpopulation.

Hence, the dynamics are given by

GDS

i = discovery +
∑

j 6=i

(direct-switch j to i− direct-switch i to j) =

Pm Su

1 + Pm Su

qi Si +
∑

j 6=i

(

Pm Sj

1 + Pm Sj

qi Si −
Pm Si

1 + Pm Si

qj Sj

) (S5)

Conversely, if the robots interact using the cross-inhibition pattern, an interaction between

committed robots may change the number of polling robots, and an interaction between a

committed and a polling robot may lead to the recruitment of the polling robot. In terms of

the parameters, we have

GCI

i = discovery + recruitment of p by i−
∑

j 6=i

(inhibition of i by j) =

Pm Su

1 + Pm Su

qi Si + γ
Pm Sp

1 + Pm Sp

qi Si −
∑

j 6=i

Pm Si

1 + Pm Si

qj Sj

(S6)

and

GCI

p =
∑

i

(

∑

j 6=i

inhibition of i by j − recruitment of p by i

)

=

∑

i

(

∑

j 6=i

Pm Si

1 + Pm Si

qj Sj − γ
Pm Sp

1 + Pm Sp

qi Si

)

,

(S7)



where γ is a scaling parameter to take into account that polling robots do not change their

commitment directly after receiving a recruitment message. Instead, a polling robot integrates

various messages, each making the robot move closer to the target site. When the polling robot

reaches the site, it finally changes its commitment state.

Substituting Eqs. (S2)-(S7) in Eq. (S1) gives us the dynamical equations for the four col-

lective behaviours:

• compare with direct-switching

Ṡi = Pe qi Su +
∑

j 6=i

(Pe Hi,j qi Sj − Pe Hj,i qj Si)

+
Pm Su

1 + Pm Su

qi Si +
∑

j 6=i

(

Pm Sj

1 + Pm Sj

qi Si −
Pm Si

1 + Pm Si

qj Sj

)

Ṡp = 0. (S8)

• compare with cross-inhibition

Ṡi = Pe qiSu +
∑

j 6=i

(Pe Hi,j qi Sj − Pe Hj,iqj Si)

+
Pm Su

1 + Pm Su

qi Si + γ
Pm Sp

1 + Pm Sp

qi Si −
∑

j 6=i

Pm Si

1 + Pm Si

qj Sj

Ṡp =
∑

i

(

∑

j 6=i

Pm Si

1 + Pm Si

qj Sj − γ
Pm Sp

1 + Pm Sp

qi Si

)

. (S9)

• resample with direct-switching

Ṡi = Pe qi Su +
∑

j 6=i

(Pe α qi Sj − Pe α qjSi)

+
Pm Su

1 + Pm Su

qi Si +
∑

j 6=i

(

Pm Sj

1 + Pm Sj

qi Si −
Pm Si

1 + Pm Si

qj Sj

)

Ṡp = 0. (S10)

• resample with cross-inhibition

Ṡi = Pe qi Su +
∑

j 6=i

(Pe α qi Sj − Pe α qj Si)

+
Pm Su

1 + Pm Su

qi Si + γ
Pm Sp

1 + Pm Sp

qi Si −
∑

j 6=i

Pm Si

1 + Pm Si

qj Sj

Ṡp =
∑

i

(

∑

j 6=i

Pm Si

1 + Pm Si

qj Sj − γ
Pm Sp

1 + Pm Sp

qi Si

)

. (S11)



Note that we make the following assumptions in order to simplify the model. Firstly, the robots

are considered to be point particles (zero size) distributed homogeneously in the environment

and performing random walk. Secondly, the target sites are assumed to be circular regions

with equal diameters which are randomly distributed across the environment. Finally, the

transmission of messages between the robots is assumed to be lossless and the estimation of

the site qualities by the visiting robots are assumed to be noiseless.

These equations can be further simplified when describing the adaptation process because

fewer subpopulations are present. Initially, all robots are assumed be committed to the pre-

viously best target site (y = 1). While this is exactly true for the compare rule, it is only an

approximation for the resample rule. However, this approximation is good for low rates of

resampling. We report the simplified equations in Eqs. (1)-(4) in the main text. For complete-

ness, we also report here the same simplified Eqs. (1)-(4) in a different format, where we use

the probabilities Pe and Pm in place of robot’s parameters, as Pe = k π r2e and Pm = k π r2s .

With this formalism the equations are more compact. Aslo, recall that x and y are the fraction

of robots committed to the new best and the previously best target sites, with quality qx and

qy, respectively. Also, z is the fraction of polling robots. The swarm has a finite size S, and

therefore x+ y + z = 1. The simplified equations are:

• For compare with direct-switching

ẋ = Pe qx y +
Pm S y

1 + Pm S y
qx x−

Pm S x

1 + Pm S x
qy y. (S12)

• For compare with cross-inhibition

ẋ = Pe qx y + γ
Pm S z

1 + Pm S z
qx x−

Pm S x

1 + Pm S x
qy y

ẏ = −Pe qx y + γ
Pm S z

1 + Pm S z
qy y −

Pm S y

1 + Pm S y
qx x. (S13)

• For resample with direct-switching

ẋ = Pe α qx y − Pe α qy x+
Pm S y

1 + Pm S y
qx x−

Pm S x

1 + Pm S x
qy y. (S14)

• For resample with cross-inhibition

ẋ = Pe α qx y − Pe α qy x+ γ
Pm S z

1 + Pm S z
qx x−

Pm S x

1 + Pm S x
qy y

ẏ = Peα qy x− Pe α qx y + γ
Pm S z

1 + Pm S z
qy y −

Pm S y

1 + Pm S y
qx x. (S15)



ST14.i The possible regimes of the recruitment/inhibition rate

Equation (S4) is the interaction rate that describes the speed at which recruitment and in-

hibition take place. The functional form of Equation (S4) is such that, if the subpopulation

being recruited si is very small — or si ≪ 1/Pm — the term in the summation becomes the

Pmqjsisj. This is reasonable because a recruitment occurs when the robots meet (with rate

Pm for each pair of robots) and a recruitment message is sent by the recruiting robot (with

probability qj). However, if si becomes very large — or si ≫ 1/Pm — the term in summation

becomes qjsj which is independent of both Pm and si. This can be explained as follows. For

very large si, some robots of subpopulation si are guaranteed to be in range of each recruiting

robot. If there are, on average, k robots in range of each recruiting robot, then a message is

sent by the recruiting robot to those k robots with a probability qj. Since, the group is assumed

to be homogeneous, each of the robots receiving the recruiting message itself has k robots in

its range which can, themselves send recruiting messages. Hence, to a first approximation, a

robot receiving a recruitment message from a robot of subpopulation sj receives k messages.

Therefore, the probability of such a robot to get recruited is 1/k. Hence the number of robots

recruited by a single recruiting robot is qj × k × 1/k = qj. Therefore the number of robots

recruited by the subpopulation sj is qjsj.

ST15. Stability and bifurcation analysis of the ODEs

We perform stability and bifurcation analysis of the four behaviours described by the models

of Eqs. (1)-(4), and we report the bifurcation plots in Fig. S6. While these models differ in the

specifics of their dynamics, there are some common features among them. In particular, due to

a bifurcation, each of these models can have either one or two stable fixed points depending on

the parameters. Let us first consider the parameters where there is only one stable fixed point

(say (x0, y0, z0)) in the system. Since this is the only attractor of the system, all trajectories

converge to this fixed point. In particular, if x0 is above the quorum threshold, a system starting

at (x, y, z) = (0, 1, 0) would adapt. In Fig. S6, this adaptation region is coloured with a blue

background. If x0 is below the quorum threshold (horizontal dotted line at 80% in Fig. S6),

the long-term behaviour of the group is that of indecision (region with a green background).

In case the parameters are such that there are two stable fixed points in the system, they are

separated by an unstable (saddle) fixed point. Therefore, in addition to the stable fixed point

(x0, y0, z0), there are other two fixed points that we can label as (x1, y1, z1) and (x2, y2, z2), such



that x0 > x1 > x2. Stability analysis and numerical continuation show that (x1, y1, z1) and

(x2, y2, z2) are the stable and unstable fixed points, respectively. The bifurcation plots of Fig. S6

show that x2 < x1 < 0.5 for all tested parameters, and that the initial condition for adaption

(x, y, z) = (0, 1, 0) always lies in the basin of attraction of (x2, y2, z2). This implies that for

parameters where two stable fixed points are present (region with an orange background in

Fig. S6), our model predicts that the swarm is unable to adapt and does not alter its consensus.

In reality, however, the stochastic nature of the dynamics may push the system from one basin

to the other. This would lead to some swarms adapting to the changes in the environment

even when two stable fixed points are present in the system. However, probability to adapt

is expected to decrease for increasing the swarm size (due to smaller fluctuations) and for

parameterisations that are distant from the bifurcation point.

The bifurcation analysis for three out of our four models have been conducted using numer-

ical continuation that we perform with the XPPAUT 8.0 software [102]. Instead, for the fourth

behaviour, based on the compare rule with direct switching pattern, we compute the analytical

condition for bifurcation of the swarm-level model using the SymPy Package [103] in Python.

We include with the paper a Jupyter notebook to reproduce the analytical results [101] which

we also report here. Recall, that the system is governed by the following differential equation,

ẋ = −
SPmvx (−x+ 1)

SPmx+ 1
+

SPmx (δ + v) (−x+ 1)

SPm (−x+ 1) + 1
+ Pev (−x+ 1) , (S16)

where, v = qy and δ = qx − qy. Note that, (1− x) is a common factor for all terms of the

equation. Therefore, the possible fixed points of the system are,

x0 = 1 (S17)

x1 =
−SPePmv + SPmv − δ +D

2SPm (−Pev + δ + 2v)
(S18)

x2 =
−SPePmv + SPmv − δ −D

2SPm (−Pev + δ + 2v)
(S19)

where,

D2 = − (−SPePmv − Pev)
(

4S2PeP
2

mv − 4S2P 2

mδ − 8S2P 2

mv
)

+
(

−S2PeP
2

mv + S2P 2

mv − SPmδ
)2

(S20)

Depending on the sign of D2, the system might have one or three real fixed points. In other

words, D2 = 0 forms the bifurcation condition for the model. In order to obtain this bifurcation

condition in terms of the experimental parameters, we substitute Pe = kπr2e , Pm = kπr2s ,
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Figure S6: Bifurcation plots for the four behaviours resulting from the combination of the two
exploration rules—compare and resample—and the two social interaction patterns—direct
switching and cross-inhibition. We plot the fixed points of the system with respect to the
communication range rs (first column), the swarm size S (second column), and the sensing
range of target sites re (third column). There are three system’s regimes marked with different
background colours: adaptation (blue), indecision (green), and stagnation (orange); see full
discussion in Text ST15. Fixed parameters: S = 50, re = 0.2, rs = 0.1, qx = 0.9, qy = 0.8,
k = 1, and ǫ = 0. For panels (D)-(F), γ = 0.95; for panels (G)-(I), α = 0.1; and for panels
(J)-(L), γ = 0.9 and α = 0.9.



qx = v + δ and qy = v to obtain,

−
(

−Sk2π2qyr
2

er
2

s − kπqyr
2

e

) (

4S2k3π3qyr
2

er
4

s − 8S2k2π2qyr
4

s − 4S2k2π2r4s (qx − qy)
)

+
(

−S2k3π3qyr
2

er
4

s + S2k2π2qyr
4

s − Skπr2s (qx − qy)
)2

= 0. (S21)

ST16. More localised information diffuses less

The model predicts that the ability of the swarm to adapt decreases by reducing the robot’s

sensing range re (Fig. S6, right column). This results hints at the fact that adaptation can be

more difficult when the information is highly localised and accessible to individuals in a limited

area. Such a model prediction, to be confirmed with experiments, needs further investigation,

out of the scope of this study. Intuitively, we can understand that by increasing the robot’s

sensing range re, the swarm reduces the few-vs-many ratio, and therefore it can exploit a larger

minority to change the opinion of the rest of the swarm. Increasing robot’s sensing range re to

reduce the few-vs-many ratio is analogous to including a number of stubborn robots that do

not change opinion. This strategy has been empirically investigated in [22], and through our

study we can explain it via mathematical modelling (see Fig. 4). Indeed, increasing the number

of stubborn robots, increases the rate by which individual are exposed to new target sites. In

our system, robots are instead exposed to new target sites through individual exploration.

Therefore, either increasing the number of stubborns or the sensing range re, the final effect is

the same: the few-vs-many ratio reduces and adaptation is facilitated.


