29 research outputs found

    Enhancing innovation between scientific and indigenous knowledge: pioneer NGOs in India

    Get PDF
    Abstract Background Until recently, little attention has been paid to local innovation capacity as well as management practices and institutions developed by communities and other local actors based on their traditional knowledge. This paper doesn't focus on the results of scientific research into innovation systems, but rather on how local communities, in a network of supportive partnerships, draw knowledge for others, combine it with their own knowledge and then innovate in their local practices. Innovation, as discussed in this article, is the capacity of local stakeholders to play an active role in innovative knowledge creation in order to enhance local health practices and further environmental conservation. In this article, the innovative processes through which this capacity is created and reinforced will be defined as a process of "ethnomedicine capacity". Methods The field study undertaken by the first author took place in India, in the State of Tamil Nadu, over a period of four months in 2007. The data was collected through individual interviews and focus groups and was complemented by participant observations. Results The research highlights the innovation capacity related to ethnomedical knowledge. As seen, the integration of local and scientific knowledge is crucial to ensure the practices anchor themselves in daily practices. The networks created are clearly instrumental to enhancing the innovation capacity that allows the creation, dissemination and utilization of 'traditional' knowledge. However, these networks have evolved in very different forms and have become entities that can fit into global networks. The ways in which the social capital is enhanced at the village and network levels are thus important to understand how traditional knowledge can be used as an instrument for development and innovation. Conclusion The case study analyzed highlights examples of innovation systems in a developmental context. They demonstrate that networks comprised of several actors from different levels can synergistically forge linkages between local knowledge and formal sciences and generate positive and negative impacts. The positive impact is the revitalization of perceived traditions while the negative impacts pertain to the transformation of these traditions into health commodities controlled by new elites, due to unequal power relations

    Molecular evolution of cyclin proteins in animals and fungi

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The passage through the cell cycle is controlled by complexes of cyclins, the regulatory units, with cyclin-dependent kinases, the catalytic units. It is also known that cyclins form several families, which differ considerably in primary structure from one eukaryotic organism to another. Despite these lines of evidence, the relationship between the evolution of cyclins and their function is an open issue. Here we present the results of our study on the molecular evolution of A-, B-, D-, E-type cyclin proteins in animals and fungi.</p> <p>Results</p> <p>We constructed phylogenetic trees for these proteins, their ancestral sequences and analyzed patterns of amino acid replacements. The analysis of infrequently fixed atypical amino acid replacements in cyclins evidenced that accelerated evolution proceeded predominantly during paralog duplication or after it in animals and fungi and that it was related to aromorphic changes in animals. It was shown also that evolutionary flexibility of cyclin function may be provided by consequential reorganization of regions on protein surface remote from CDK binding sites in animal and fungal cyclins and by functional differentiation of paralogous cyclins formed in animal evolution.</p> <p>Conclusions</p> <p>The results suggested that changes in the number and/or nature of cyclin-binding proteins may underlie the evolutionary role of the alterations in the molecular structure of cyclins and their involvement in diverse molecular-genetic events.</p

    Sustainability issues for biodiversity business

    No full text

    Unveiling the Eschar: A Mite’s Mark in Scrub Typhus

    Get PDF
    Scrub typhus is an acute febrile illness caused by Orientia tsutsugamushi, a Gram-negative intracellular organism transmittedby Leptotrombidium mites, with wild rats serving as natural reservoirs. The disease is more common in the TsutsugamushiTriangle, often afflicting travelers and creating diagnostic challenges in clinical practice. We present the case of a diabeticpatient who acquired the infection while visiting an agricultural farm. Our discussion covers clinical manifestations,diagnostic markers and treatment modalities, emphasizing the significance of early recognition and the benefits of prompttreatment. The importance of searching for an eschar, a key physical sign, is underscored and potential serious outcomesare discussed. Recent advances and preventive measures are also highlighted. This synthesis of research and clinical insightsaims to enhance global awareness, prompt diagnosis and effective management of scrub typhus

    Not Available

    No full text
    Not AvailableNot AvailableVietnam Academy of Agricultural Sciences (VAAS

    Not Available

    No full text
    Not AvailableTo improve grain yield under direct seeded and aerobic conditions, weed competitive ability of a rice genotype is a key desirable trait. Hence, understanding and dissecting weed competitive associated traits at both morphological and molecular level is important in developing weed competitive varieties. In the present investigation, the QTLs associated with weed competitive traits were identifed in BC1F2:3 population derived from weed competitive accession of O. glaberrima (IRGC105187) and O. sativa cultivar IR64. The mapping population consisting of 144 segregating lines were phenotyped for 33 weed competitive associated traits under direct seeded condition. Genetic analysis of weed competitive traits carried out in BC1F2:3 population showed signifcant variation for the weed competitive traits and predominance of additive gene action. The population was genotyped with 81 genome wide SSR markers and a linkage map covering 1423 cM was constructed. Composite interval mapping analysis identifed 72 QTLs linked to 33 weed competitive traits which were spread on the 11 chromosomes. Among 72 QTLs, 59 were found to be major QTLs (> 10% PVE). Of the 59 major QTLs, 38 had favourable allele contributed from the O. glaberrima parent. We also observed nine QTL hotspots for weed competitive traits (qWCA2a, qWCA2b, qWCA2c, qWCA3, qWCA5, qWCA7, qWCA8, qWCA9, and qWCA10) wherein several QTLs co-localised. Our study demonstrates O. glaberrima species as potential source for improvement for weed competitive traits in rice and identifed QTLs hotspots associated with weed competitive traits.Department of Biotechnology, Government of India Grant no. BT/PR17115/NER/95/434/2015
    corecore