14 research outputs found
Analyzing the regulation of metabolic pathways in human breast cancer
<p>Abstract</p> <p>Background</p> <p>Tumor therapy mainly attacks the metabolism to interfere the tumor's anabolism and signaling of proliferative second messengers. However, the metabolic demands of different cancers are very heterogeneous and depend on their origin of tissue, age, gender and other clinical parameters. We investigated tumor specific regulation in the metabolism of breast cancer.</p> <p>Methods</p> <p>For this, we mapped gene expression data from microarrays onto the corresponding enzymes and their metabolic reaction network. We used Haar Wavelet transforms on optimally arranged grid representations of metabolic pathways as a pattern recognition method to detect orchestrated regulation of neighboring enzymes in the network. Significant combined expression patterns were used to select metabolic pathways showing shifted regulation of the aggressive tumors.</p> <p>Results</p> <p>Besides up-regulation for energy production and nucleotide anabolism, we found an interesting cellular switch in the interplay of biosynthesis of steroids and bile acids. The biosynthesis of steroids was up-regulated for estrogen synthesis which is needed for proliferative signaling in breast cancer. In turn, the decomposition of steroid precursors was blocked by down-regulation of the bile acid pathway.</p> <p>Conclusion</p> <p>We applied an intelligent pattern recognition method for analyzing the regulation of metabolism and elucidated substantial regulation of human breast cancer at the interplay of cholesterol biosynthesis and bile acid metabolism pointing to specific breast cancer treatment.</p
Modulation of purinergic signaling by NPP-type ectophosphodiesterases
Extracellular nucleotides can elicit a wide array of cellular responses by binding to specific purinergic receptors. The level of ectonucleotides is dynamically controlled by their release from cells, synthesis by ectonucleoside diphosphokinases and ectoadenylate kinases, and hydrolysis by ectonucleotidases. One of the four structurally unrelated families of ectonucleotidases is represented by the NPP-type ectophosphodiesterases. Three of the seven members of the NPP family, namely NPP1–3, are known to hydrolyze nucleotides. The enzymatic action of NPP1–3 (in)directly results in the termination of nucleotide signaling, the salvage of nucleotides and/or the generation of new messengers like ADP, adenosine or pyrophosphate. NPP2 is unique in that it hydrolyzes both nucleotides and lysophospholipids and, thereby, generates products that could synergistically promote cell motility. We review here the enzymatic properties of NPPs and analyze current evidence that links their nucleotide-hydrolyzing capability to epithelial and neural functions, the immune response and cell motility
Cyclosporin and tacrolimus increase plasma levels of adenosine in kidney transplanted patients
8reservedThe immunosuppressive agents, cyclosporin (CsA) and tacrolimus (FK506), display cardioprotective activities. The mechanism would consist on the inhibition of the enzyme, adenosine kinase (AK), leading to an increase in adenosine (ADO) levels. ADO, inosine (INO) and nucleotide plasma levels were measured in kidney transplant recipients before and 1, 2, 4, 6 and 8 h after the administration of CsA or FK506. After CsA and FK506 administration, ADO plasma levels significantly increased, reaching a peak level after 2 h (483 ± 124 and 429 ± 96 nm, respectively), and then progressively declined. Calculated peak values (tmax) of ADO were slightly delayed with respect to those of CsA and FK506. Treatment with rapamycin did not influence the phenomenon. The dynamic profile of plasma changes of ADO, nucleotides and INO were consistent with the inhibition of the enzyme, AK. ADO increase may be clinically relevant in terms of anti-ischaemic, tissue protecting, and immunosuppressive activities as well as in terms of nephrotoxicitymixedCapecchi, PIER LEOPOLDO; Rechichi, Serena; Lazzerini, PIETRO ENEA; Collini, A; Guideri, Francesca; Ruggieri, Giuliana; Carmellini, Mario; LAGHI PASINI, FrancoCapecchi, PIER LEOPOLDO; Rechichi, Serena; Lazzerini, PIETRO ENEA; Collini, A; Guideri, Francesca; Ruggieri, G; Carmellini, Mario; LAGHI PASINI, Franc
Effects of Maternal 5,10-Methylenetetrahydrofolate Reductase C677T and A1298C Polymorphisms and Tobacco Smoking on Infant Birth Weight in a Japanese Population
BACKGROUND: Intracellular folate hemostasis depends on the 5,10-methylenetetrahydrofolate reductase (MTHFR) gene. Because 5,10-MTHFR 677TT homozygosity and tobacco smoking are associated with low folate status, we tested the hypothesis that smoking in mothers with 5,10-MTHFR C677T or A1298C polymorphisms would be independently associated with lower birth weight among their offspring. METHODS: We assessed 1784 native Japanese mother-child pairs drawn from the ongoing birth cohort of The Hokkaido Study on Environment and Children’s Health. Data (demographic information, hospital birth records, and biological specimens) were extracted from recruitments that took place during the period from February 2003 to March 2006. Maternal serum folate were assayed by chemiluminescent immunoassay, and genotyping of 5,10-MTHFR C677T/A1298C polymorphisms was done using a TaqMan allelic discrimination assay. RESULTS: The prevalence of folate deficiency (<6.8 nmol/L) was 0.3%. The 5,10-MTHFR 677CT genotype was independently associated with an increase of 36.40 g (95% CI: 2.60 to 70.30, P = 0.035) in mean infant birth weight and an increase of 90.70 g (95% CI: 6.00 to 175.50, P = 0.036) among male infants of nonsmokers. Female infants of 677TT homozygous passive smokers were 99.00 g (95% CI: −190.26 to −7.56, P = 0.034) lighter. The birth weight of the offspring of smokers with 5,10-MTHFR 1298AA homozygosity was lower by 107.00 g (95% CI: −180.00 to −33.90, P = 0.004). CONCLUSIONS: The results suggest that, in this population, maternal 5,10-MTHFR C677T polymorphism, but not the 5,10-MTHFR A1298C variant, is independently associated with improvement in infant birth weight, especially among nonsmokers. However, 5,10-MTHFR 1298AA might be associated with folate impairment and could interact with tobacco smoke to further decrease birth weight
Immunity, inflammation and cancer: a leading role for adenosine
Cancer is a complex disease that is dictated by both cancer cell-intrinsic and cell-extrinsic processes. Adenosine is an ancient extracellular signalling molecule that can regulate almost all aspects of tissue function. As such, several studies have recently highlighted a crucial role for adenosine signalling in regulating the various aspects of cell-intrinsic and cell-extrinsic processes of cancer development. This Review critically discusses the role of adenosine and its receptors in regulating the complex interplay among immune, inflammatory, endothelial and cancer cells during the course of neoplastic disease