85 research outputs found
Simulation of dilated heart failure with continuous flow circulatory support
Lumped parameter models have been employed for decades to simulate important hemodynamic couplings between a left ventricular assist device (LVAD) and the native circulation. However, these studies seldom consider the pathological descending limb of the Frank-Starling response of the overloaded ventricle. This study introduces a dilated heart failure model featuring a unimodal end systolic pressure-volume relationship (ESPVR) to address this critical shortcoming. The resulting hemodynamic response to mechanical circulatory support are illustrated through numerical simulations of a rotodynamic, continuous flow ventricular assist device (cfVAD) coupled to systemic and pulmonary circulations with baroreflex control. The model further incorporated septal interaction to capture the influence of left ventricular (LV) unloading on right ventricular function. Four heart failure conditions were simulated (LV and bi-ventricular failure with/ without pulmonary hypertension) in addition to normal baseline. Several metrics of LV function, including cardiac output and stroke work, exhibited a unimodal response whereby initial unloading improved function, and further unloading depleted preload reserve thereby reducing ventricular output. The concept of extremal loading was introduced to reflect the loading condition in which the intrinsic LV stroke work is maximized. Simulation of bi-ventricular failure with pulmonary hypertension revealed inadequacy of LV support alone. These simulations motivate the implementation of an extremum tracking feedback controller to potentially optimize ventricular recovery. © 2014 Wang et al
The Formation and Stabilization of a Novel G-Quadruplex in the 5âČ-Flanking Region of the Relaxin Gene
It has been reported that binding of STAT3 protein to the 5âČ-flanking region of the relaxin gene may result in downregulation of the relaxin expression. There is a Guanine(G)-rich segment located in about 3.8 Kb upstream of the relaxin gene and very close to the STAT3's binding site. In our study, NMR spectroscopy revealed the formation of G-quadruplex by this G-rich strand, and the result was confirmed by ESI mass spectrometry and CD spectroscopy. The theoretical structure of RLX G-quadruplex was constructed and refined by molecular modeling. When this relaxin G-quadruplex was stabilized by berberine(ÎTmâ=â10°C), a natural alkaloid from a Chinese herb, the gene expression could be up-regulated in a dose-dependent manner which was proved by luciferase assay. This result is different from the general G-quadruplex function that inhibiting the telomere replication or down-regulating many oncogenes expression. Therefore, our study reported a novel G-quadruplex in the relaxin gene and complemented the regulation mechanism about gene expression by G-quadruplexes
Nuclear Factor Kappa B Activation Occurs in the Amnion Prior to Labour Onset and Modulates the Expression of Numerous Labour Associated Genes
Background: Prior to the onset of human labour there is an increase in the synthesis of prostaglandins, cytokines and chemokines in the fetal membranes, particular the amnion. This is associated with activation of the transcription factor nuclear factor kappa B (NFkB). In this study we characterised the level of NFkB activity in amnion epithelial cells as a measure of amnion activation in samples collected from women undergoing caesarean section at 39 weeks gestation prior to the onset of labour. Methodology/Principal Findings: We found that a proportion of women exhibit low or moderate NFkB activity while other women exhibit high levels of NFkB activity (n = 12). This activation process does not appear to involve classical pathways of NFkB activation but rather is correlated with an increase in nuclear p65-Rel-B dimers. To identify the full range of genes upregulated in association with amnion activation, microarray analysis was performed on carefully characterised nonactivated amnion (n = 3) samples and compared to activated samples (n = 3). A total of 919 genes were upregulated in response to amnion activation including numerous inflammatory genes such cyclooxygenase-2 (COX-2, 44-fold), interleukin 8 (IL-8, 6-fold), IL-1 receptor accessory protein (IL-1RAP, 4.5-fold), thrombospondin 1 (TSP-1, 3-fold) and, unexpectedly, oxytocin receptor (OTR, 24-fold). Ingenuity Pathway Analysis of the microarray data reveal the two main gene networks activated concurrently with amnion activation are i) cell death, cancer and morphology and ii) cell cycle, embryoni
Outcome of crisis intervention for borderline personality disorder and post traumatic stress disorder: a model for modification of the mechanism of disorder in complex post traumatic syndromes
<p>Abstract</p> <p>Background</p> <p>This study investigates the outcome of crisis intervention for chronic post traumatic disorders with a model based on the theory that such crises manifest trauma in the present. The sufferer's behavior is in response to the current perception of dependency and entrapment in a mistrusted relationship. The mechanism of disorder is the sufferer's activity, which aims to either prove or disprove the perception of entrapment, but, instead, elicits more semblances of it in a circular manner. Patients have reasons to keep such activity private from therapy and are barely aware of it as the source of their symptoms.</p> <p>Methods</p> <p>The hypothesis is that the experimental intervention will reduce symptoms broadly within 8 to 24 h from initiation of treatment, compared to treatment as usual. The experimental intervention sidesteps other symptoms to engage patients in testing the trustworthiness of the troubled relationship with closure, thus ending the circularity of their own ways. The study compares 32 experimental subjects with 26 controls at similar crisis stabilization units.</p> <p>Results</p> <p>The results of the Brief Psychiatric Rating Scale (BPRS) supported the hypothesis (both in total score and for four of five subscales), as did results with Client Observation, a pilot instrument designed specifically for the circular behavior targeted by the experimental intervention. Results were mostly non-significant from two instruments of patient self-observation, which provided retrospective pretreatment scores.</p> <p>Conclusions</p> <p>The discussion envisions further steps to ascertain that this broad reduction of symptoms ensues from the singular correction that distinguishes the experimental intervention.</p> <p>Trial registration</p> <p>Protocol Registration System NCT00269139. The PRS URL is <url>https://register.clinicaltrials.gov</url></p
Medial prefrontal cortex serotonin 1A and 2A receptor binding interacts to predict threat-related amygdala reactivity
Background\ud
The amygdala and medial prefrontal cortex (mPFC) comprise a key corticolimbic circuit that helps shape individual differences in sensitivity to threat and the related risk for psychopathology. Although serotonin (5-HT) is known to be a key modulator of this circuit, the specific receptors mediating this modulation are unclear. The colocalization of 5-HT1A and 5-HT2A receptors on mPFC glutamatergic neurons suggests that their functional interactions may mediate 5-HT effects on this circuit through top-down regulation of amygdala reactivity. Using a multimodal neuroimaging strategy in 39 healthy volunteers, we determined whether threat-related amygdala reactivity, assessed with blood oxygen level-dependent functional magnetic resonance imaging, was significantly predicted by the interaction between mPFC 5-HT1A and 5-HT2A receptor levels, assessed by positron emission tomography.\ud
\ud
Results\ud
5-HT1A binding in the mPFC significantly moderated an inverse correlation between mPFC 5-HT2A binding and threat-related amygdala reactivity. Specifically, mPFC 5-HT2A binding was significantly inversely correlated with amygdala reactivity only when mPFC 5-HT1A binding was relatively low.\ud
\ud
Conclusions\ud
Our findings provide evidence that 5-HT1A and 5-HT2A receptors interact to shape serotonergic modulation of a functional circuit between the amygdala and mPFC. The effect of the interaction between mPFC 5-HT1A and 5-HT2A binding and amygdala reactivity is consistent with the colocalization of these receptors on glutamatergic neurons in the mPFC
MRI study of corpus callosum in patients with borderline personality disorder. A pilot study
This pilot study examined the integrity of the corpus callosum in a sample of patients with borderline personality disorder (BPD), as abnormalities in inter-hemispheric communication could possibly be involved in illness pathophysiology. We utilized magnetic resonance imaging (MRI) signal intensity (SI) and morphometric measures. Ten BPD and 20 healthy control subjects were assessed for current and past Axis I and Axis II comorbidities and histories of childhood abuse. Regional CC SI and areas were measured with semi-automated software from three-dimensional gradient echo imaging scans. Analysis of covariance was conducted to evaluate the results. No significant differences were observed between BPD and controls in the SI or area of any CC region. Abnormalities in interhemispheric connectivity do not appear necessary for the development of BPD. Further studies with larger samples are needed to confirm this preliminary finding
- âŠ