484 research outputs found

    Negligible influence of moderate to severe hyperthermia on blood-brain barrier permeability and neuronal-parenchymal integrity in healthy men

    Get PDF
    With growing use for hyperthermia as a cardiovascular therapeutic, there is surprisingly little information regarding the acute effects it may have on the integrity of the neurovascular unit (NVU). Indeed, relying on animal data would suggest hyperthermia comparable to levels attained in thermal therapy will disrupt the blood-brain barrier (BBB) and damage the cerebral parenchymal cells. We sought to address the hypothesis that controlled passive hyperthermia is not sufficient to damage the NVU in healthy humans. Young men (n=11) underwent acute passive heating until +2°C or absolute esophageal temperature of 39.5°C. The presence of BBB opening was determined by trans-cerebral exchange kinetics (radial-arterial and jugular venous cannulation) of S100B. Neuronal parenchymal damage was determined by the trans-cerebral exchange of tau protein, neuron specific enolase (NSE) and neurofilament-light protein (NF-L). Cerebral blood flow to calculate exchange kinetics was measured by duplex ultrasound of the right internal carotid and left vertebral artery. Passive heating was performed via warm-water perfused suit. In hyperthermia, there was no increase in the cerebral exchange of S100B (p=0.327), tau protein (p=0.626), NF-L (p=0.0.447) or NSE (p=0.908) suggesting +2°C core temperature is not sufficient to acutely stress the NVU in healthy men. However, there was a significant condition effect (p=0.028) of NSE, corresponding to a significant increase in arterial (p=0.023) but not venous (p=0.173) concentrations in hyperthermia, potentially indicating extra-cerebral release of NSE. Collectively, results from the present study support the notion that in young men there is little concern for NVU damage with acute hyperthermia of +2°C

    The efficacy of surgical decompression before 24 hours versus 24 to 72 hours in patients with spinal cord injury from T1 to L1 – with specific consideration on ethics: a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is no clear evidence that early decompression following spinal cord injury (SCI) improves neurologic outcome. Such information must be obtained from randomized controlled trials (RCTs). To date no large scale RCT has been performed evaluating the timing of surgical decompression in the setting of thoracolumbar spinal cord injury. A concern for many is the ethical dilemma that a delay in surgery may adversely effect neurologic recovery although this has never been conclusively proven. The purpose of this study is to compare the efficacy of early (before 24 hours) verse late (24–72 hours) surgical decompression in terms of neurological improvement in the setting of traumatic thoracolumbar spinal cord injury in a randomized format by independent, trained and blinded examiners.</p> <p>Methods</p> <p>In this prospective, randomized clinical trial, 328 selected spinal cord injury patients with traumatic thoracolumbar spinal cord injury are to be randomly assigned to: 1) early surgery (before 24 hours); or 2) late surgery (24–72 hours). A rapid response team and set up is prepared to assist the early treatment for the early decompressive group. Supportive care, i.e. pressure support, immobilization, will be provided on admission to the late decompression group. Patients will be followed for at least 12 months posttrauma.</p> <p>Discussion</p> <p>This study will hopefully assist in contributing to the question of the efficacy of the timing of surgery in traumatic thoracolumbar SCI.</p> <p>Trial Registration</p> <p><b>RCT registration number: ISRCTN61263382</b></p

    Evaluating model outputs using integrated global speleothem records of climate change since the last glacial

    Get PDF
    Although quantitative isotope data from speleothems has been used to evaluate isotope-enabled model simulations, currently no consensus exists regarding the most appropriate methodology through which to achieve this. A number of modelling groups will be running isotope-enabled palaeoclimate simulations in the framework of the Coupled Model Intercomparison Project Phase 6, so it is timely to evaluate different approaches to using the speleothem data for data–model comparisons. Here, we illustrate this using 456 globally distributed speleothem δ18O records from an updated version of the Speleothem Isotopes Synthesis and Analysis (SISAL) database and palaeoclimate simulations generated using the ECHAM5-wiso isotope-enabled atmospheric circulation model. We show that the SISAL records reproduce the first-order spatial patterns of isotopic variability in the modern day, strongly supporting the application of this dataset for evaluating model-derived isotope variability into the past. However, the discontinuous nature of many speleothem records complicates the process of procuring large numbers of records if data–model comparisons are made using the traditional approach of comparing anomalies between a control period and a given palaeoclimate experiment. To circumvent this issue, we illustrate techniques through which the absolute isotope values during any time period could be used for model evaluation. Specifically, we show that speleothem isotope records allow an assessment of a model's ability to simulate spatial isotopic trends. Our analyses provide a protocol for using speleothem isotope data for model evaluation, including screening the observations to take into account the impact of speleothem mineralogy on δ18O values, the optimum period for the modern observational baseline and the selection of an appropriate time window for creating means of the isotope data for palaeo-time-slices

    What is the potential of oligodendrocyte progenitor cells to successfully treat human spinal cord injury?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Spinal cord injury is a serious and debilitating condition, affecting millions of people worldwide. Long seen as a permanent injury, recent advances in stem cell research have brought closer the possibility of repairing the spinal cord. One such approach involves injecting oligodendrocyte progenitor cells, derived from human embryonic stem cells, into the injured spinal cord in the hope that they will initiate repair. A phase I clinical trial of this therapy was started in mid 2010 and is currently underway.</p> <p>Discussion</p> <p>The theory underlying this approach is that these myelinating progenitors will phenotypically replace myelin lost during injury whilst helping to promote a repair environment in the lesion. However, the importance of demyelination in the pathogenesis of human spinal cord injury is a contentious issue and a body of literature suggests that it is only a minor factor in the overall injury process.</p> <p>Summary</p> <p>This review examines the validity of the theory underpinning the on-going clinical trial as well as analysing published data from animal models and finally discussing issues surrounding safety and purity in order to assess the potential of this approach to successfully treat acute human spinal cord injury.</p

    Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas

    Get PDF
    Summary Sarcomas are a broad family of mesenchymal malignancies exhibiting remarkable histologic diversity. We describe the multi-platform molecular landscape of 206 adult soft tissue sarcomas representing 6 major types. Along with novel insights into the biology of individual sarcoma types, we report three overarching findings: (1) unlike most epithelial malignancies, these sarcomas (excepting synovial sarcoma) are characterized predominantly by copy-number changes, with low mutational loads and only a few genes (TP53, ATRX, RB1) highly recurrently mutated across sarcoma types; (2) within sarcoma types, genomic and regulomic diversity of driver pathways defines molecular subtypes associated with patient outcome; and (3) the immune microenvironment, inferred from DNA methylation and mRNA profiles, associates with outcome and may inform clinical trials of immune checkpoint inhibitors. Overall, this large-scale analysis reveals previously unappreciated sarcoma-type-specific changes in copy number, methylation, RNA, and protein, providing insights into refining sarcoma therapy and relationships to other cancer types

    Cellular therapies for treating pain associated with spinal cord injury

    Get PDF
    Spinal cord injury leads to immense disability and loss of quality of life in human with no satisfactory clinical cure. Cell-based or cell-related therapies have emerged as promising therapeutic potentials both in regeneration of spinal cord and mitigation of neuropathic pain due to spinal cord injury. This article reviews the various options and their latest developments with an update on their therapeutic potentials and clinical trialing
    corecore