8 research outputs found

    Genomic Expression Analysis Reveals Strategies of Burkholderia cenocepacia to Adapt to Cystic Fibrosis Patients' Airways and Antimicrobial Therapy

    Get PDF
    Pulmonary colonization of cystic fibrosis (CF) patients with Burkholderia cenocepacia or other bacteria of the Burkholderia cepacia complex (Bcc) is associated with worse prognosis and increased risk of death. During colonization, the bacteria may evolve under the stressing selection pressures exerted in the CF lung, in particular, those resulting from challenges of the host immune defenses, antimicrobial therapy, nutrient availability and oxygen limitation. Understanding the adaptive mechanisms that promote successful colonization and long-term survival of B. cenocepacia in the CF lung is essential for an improved therapeutic outcome of chronic infections. To get mechanistic insights into these adaptive strategies a transcriptomic analysis, based on DNA microarrays, was explored in this study. The genomic expression levels in two clonal variants isolated during long-term colonization of a CF patient who died from the cepacia syndrome were compared. One of the isolates examined, IST439, is the first B. cenocepacia isolate retrieved from the patient and the other isolate, IST4113, was obtained three years later and is more resistant to different classes of antimicrobials. Approximately 1000 genes were found to be differently expressed in the two clonal variants reflecting a marked reprogramming of genomic expression. The up-regulated genes in IST4113 include those involved in translation, iron uptake (in particular, in ornibactin biosynthesis), efflux of drugs and in adhesion to epithelial lung tissue and to mucin. Alterations related with adaptation to the nutritional environment of the CF lung and to an oxygen-limited environment are also suggested to be a key feature of transcriptional reprogramming occurring during long-term colonization, antibiotic therapy and the progression of the disease

    Transcription regulation and membrane stress management in enterobacterial pathogens

    Get PDF
    Transcription regulation in a temporal and conditional manner underpins the lifecycle of enterobacterial pathogens. Upon exposure to a wide array of environmental cues, these pathogens modulate their gene expression via the RNA polymerase and associated sigma factors. Different sigma factors, either involved in general 'house-keeping' or specific responses, guide the RNA polymerase to their cognate promoter DNAs. The major alternative sigma54 factor when activated helps pathogens manage stresses and proliferate in their ecological niches. In this chapter, we review the function and regulation of the sigma54-dependent Phage shock protein (Psp) system-a major stress response when Gram-negative pathogens encounter damages to their inner membranes. We discuss the recent development on mechanisms of gene regulation, signal transduction and stress mitigation in light of different biophysical and biochemical approaches

    Seladelpar efficacy and safety at 3 months in patients with primary biliary cholangitis: ENHANCE, a phase 3, randomized, placebo-controlled study

    No full text

    Proteomics dedicated to biofilmology: What have we learned from a decade of research?

    No full text
    corecore