9 research outputs found

    Glucose-loading reduces bone remodeling in women and osteoblast function in vitro

    Get PDF
    Aging is associated with a reduction in osteoblast life span and the volume of bone formed by each basic multicellular unit. Each time bone is resorbed, less is deposited producing microstructural deterioration. Aging is also associated with insulin resistance and hyperglycemia, either of which may cause, or be the result of, a decline in undercarboxylated osteocalcin (ucOC), a protein produced by osteoblasts that increases insulin sensitivity. We examined whether glucose-loading reduces bone remodeling and ucOC in vivo and osteoblast function in vitro, and so compromises bone formation. We administered an oral glucose tolerance test (OGTT) to 18 pre and postmenopausal, nondiabetic women at rest and following exercise and measured serum levels of bone remodeling markers (BRMs) and ucOC. We also assessed whether increasing glucose concentrations with or without insulin reduced survival and activity of cultured human osteoblasts. Glucose-loading at rest and following exercise reduced BRMs in pre and postmenopausal women and reduced ucOC in postmenopausal women. Higher glucose correlated negatively, whereas insulin correlated positively, with baseline BRMs and ucOC. The increase in serum glucose following resting OGTT was associated with the reduction in bone formation markers. D-glucose (>10 mmol L-1) increased osteoblast apoptosis, reduced cell activity and osteocalcin expression compared with 5 mmol L-1. Insulin had a protective effect on these parameters. Collagen expression in vitro was not affected in this time course. In conclusion, glucose exposure reduces BRMs in women and exercise failed to attenuate this suppression effect. The suppressive effect of glucose on BRMs may be due to impaired osteoblast work and longevity. Whether glucose influences material composition and microstructure remains to be determined

    The effect of parathyroid hormone on the uptake and retention of 25-hydroxyvitamin D in skeletal muscle cells.

    Full text link
    Data from our studies, and those of others, support the proposal that there is a role for skeletal muscle in the maintenance of vitamin D status. We demonstrated that skeletal muscle is able to internalise extracellular vitamin D binding protein, which then binds to actin in the cytoplasm, to provide high affinity binding sites which accumulate 25-hydroxyvitamin D3 (25(OH)D3) [1]. This study investigated the concentration- and time-dependent effects of parathyroid hormone (PTH) on the capacity of muscle cells to take up and release 3H-25(OH)D3. Uptake and retention studies for 3H-25(OH)D3 were carried out with C2C12 cells differentiated into myotubes and with primary mouse muscle fibers as described [1]. The presence of PTH receptors on mouse muscle fibers was demonstrated by immunohistochemistry and PTH receptors were detected in differentiated myotubes, but not myoblasts, and on muscle fibers by Western blot. Addition of low concentrations of vitamin D binding protein to the incubation media did not alter uptake of 25(OH)D3. Pre-incubation of C2 myotubes or primary mouse muscle fibers with PTH (0.1 to 100 pM) for 3h resulted in a concentration-dependent decrease in 25(OH)D3 uptake after 4 or 16h. These effects were significant at 0.1 or 1pM PTH (p<0.001) and plateaued at 10pM, with 25(OH)D3 uptake reduced by over 60% (p<0.001) in both cell types. In C2 myotubes, retention of 25(OH)D3 was decreased after addition of PTH (0.1 to 100pM) in a concentration-dependent manner by up to 80% (p<0.001) compared to non-PTH treated-C2 myotubes. These data show that muscle uptake and retention of 25(OH)D3 are modulated by PTH, a physiological regulator of mineral homeostasis, but the cell culture model may not be a comprehensive reflection of vitamin D homeostatic mechanisms in whole animals

    Photoprotective Properties of Vitamin D and Lumisterol Hydroxyderivatives

    No full text
    corecore