14 research outputs found

    Molecular Dynamics Simulation of the Complex PBP-2x with Drug Cefuroxime to Explore the Drug Resistance Mechanism of Streptococcus suis R61

    Get PDF
    Drug resistance of Streptococcus suis strains is a worldwide problem for both humans and pigs. Previous studies have noted that penicillin-binding protein (PBPs) mutation is one important cause of β-lactam antibiotic resistance. In this study, we used the molecular dynamics (MD) method to study the interaction differences between cefuroxime (CES) and PBP2x within two newly sequenced Streptococcus suis: drug-sensitive strain A7, and drug-resistant strain R61. The MM-PBSA results proved that the drug bound much more tightly to PBP2x in A7 (PBP2x-A7) than to PBP2x in R61 (PBP2x-R61). This is consistent with the evidently different resistances of the two strains to cefuroxime. Hydrogen bond analysis indicated that PBP2x-A7 preferred to bind to cefuroxime rather than to PBP2x-R61. Three stable hydrogen bonds were formed by the drug and PBP2x-A7, while only one unstable bond existed between the drug and PBP2x-R61. Further, we found that the Gln569, Tyr594, and Gly596 residues were the key mutant residues contributing directly to the different binding by pair wise energy decomposition comparison. By investigating the binding mode of the drug, we found that mutant residues Ala320, Gln553, and Thr595 indirectly affected the final phenomenon by topological conformation alteration. Above all, our results revealed some details about the specific interaction between the two PBP2x proteins and the drug cefuroxime. To some degree, this explained the drug resistance mechanism of Streptococcus suis and as a result could be helpful for further drug design or improvement

    Comparative Genomics Study of Multi-Drug-Resistance Mechanisms in the Antibiotic-Resistant Streptococcus suis R61 Strain

    Get PDF
    BACKGROUND: Streptococcus suis infections are a serious problem for both humans and pigs worldwide. The emergence and increasing prevalence of antibiotic-resistant S. suis strains pose significant clinical and societal challenges. RESULTS: In our study, we sequenced one multi-drug-resistant S. suis strain, R61, and one S. suis strain, A7, which is fully sensitive to all tested antibiotics. Comparative genomic analysis revealed that the R61 strain is phylogenetically distinct from other S. suis strains, and the genome of R61 exhibits extreme levels of evolutionary plasticity with high levels of gene gain and loss. Our results indicate that the multi-drug-resistant strain R61 has evolved three main categories of resistance. CONCLUSIONS: Comparative genomic analysis of S. suis strains with diverse drug-resistant phenotypes provided evidence that horizontal gene transfer is an important evolutionary force in shaping the genome of multi-drug-resistant strain R61. In this study, we discovered novel and previously unexamined mutations that are strong candidates for conferring drug resistance. We believe that these mutations will provide crucial clues for designing new drugs against this pathogen. In addition, our work provides a clear demonstration that the use of drugs has driven the emergence of the multi-drug-resistant strain R61

    Genetic diversity of Streptococcus suis clinical isolates from pigs and humans in Italy (2003-2007)

    No full text
    Streptococcus suis, a major porcine pathogen, is emerging as a zoonotic agent capable of causing severe invasive disease in humans exposed to pigs or pork products. S. suis infection is rare in industrialised countries and usually arises as sporadic cases, with meningitis the most common clinical presentation in humans. Recent reports of two cases of meningitis in Sardinia and northeastern Italy prompted this first characterisation of Italian S. suis isolates. Fifty-nine S. suis strains, the two recent human strains and 57 swine clinical isolates collected between 2003 and 2007 from different Italian herds and regions, were tested for antimicrobial susceptibility, PCR-screened for virulence and antibiotic resistance genes, and subjected to molecular typing. Phenotypic and genotypic analysis demonstrated an overall high genetic diversity among isolates, the majority of which were resistant to macrolides (78%) and tetracyclines (90%). The erm(B), tet(O), mosaic tet(O/W/32/O), tet(W), and tet(M) genes were detected. The tet(O/W/32/O) gene, the most frequent tet gene after tet(O), had never been described in the genus Streptococcus before. In addition, a virulent cps2, erm(B) tet(O) clone, belonging to sequence type 1 (ST1) of the ST1 complex, was found to be prevalent and persistent in Italian swine herds. Finally, the two human isolates (both ST1) carrying cps2, erm(B) and tet(W) were seen to be closely related to each other
    corecore