24 research outputs found
Mass Transfer and Volume Changes in French Fries During Air Frying
An erratum to this article can be found at http://dx.doi.org/10.1007/s11947-012-0904-8 (The graph located in the left upper corner of Fig. 2 is incorrect)The production of healthier fried foods requires the
adaptation of industrial processes. In this context, air frying is
an alternative to deep oil frying to obtain French fries with
lower fat content. Kinetic analysis of compositional changes
and main fluxes involved in air frying were carried out, and
the results were compared to those obtained for deep oil
frying. The influence of the type of sample (unpretreated,
frozen, or blanched potatoes) was also analyzed. The results
showed that oil uptake is much lower in air frying although a
much longer processing time is required. Also, water loss and
thus the loss of volume were much higher in air frying compared
to the conventional process.The authors would like to thank the Universitat Politecnica de Valencia (PAID-06-09-2876) for the financial support given to this investigation.Andrés Grau, AM.; Argüelles Foix, AL.; Castelló Gómez, ML.; Heredia Gutiérrez, AB. (2013). Mass Transfer and Volume Changes in French Fries During Air Frying. Food and Bioprocess Technology. 6(8):1917-1924. https://doi.org/10.1007/s11947-012-0861-2S1917192468Aguilar, C. N., Anzaldúa-Morales, R., Talamás, R., & Gastélum, G. (1997). Low-temperature blanch improves textural quality of French-fries. Journal of Food Science, 62, 568–571.AOAC. (1980). Official methods of analysis (12th ed.). Washington, D.C., USA: Association of Official Analytical Chemists.Califano, A. N., & Calvelo, A. (1987). Adjustment of surface concentration of reducing sugars before frying of potato strips. Journal of Food Processing and Preservation, 12, 1–9.Clark, J. P. (2003). Happy birthday, potato chip! And other snack developments. Food Technology, 57(5), 89–92.Debnath, S., Bhat, K. K., & Rastogi, N. K. (2003). Effect of pre-drying on kinetics of moisture loss and oil uptake during deep fat frying of chickpea flour-based snack food. LWT—Food Science and Technology, 36, 91–98.Du Pont, M. S., Kirby, A. B., & Smith, A. C. (1992). Instrumental and sensory tests of cooked frozen French fries. International Journal of Food Science and Technology, 27, 285–295.Dueik, V., Robert, P., & Bouchon, P. (2010). Vacuum frying reduces oil uptake and improves the quality parameters of carrot crisps. Food Chemistry, 119(3), 1143–1149.Hubbard, L. J., & Farkas, B. E. (2000). Influence of oil temperature on convective heat transfer during immersion frying. Journal of Food Processing and Preservation, 24(2), 143–162.Krokida, M. K., Oreopoulou, V., & Maroulis, Z. B. (2000). Water loss and oil uptake as a function of frying time. Journal of Food Engineering, 44, 39–46.Mestdagh, F., De Wilde, T., Fraselle, S., Govaert, Y., Ooghe, W., Degroodt, J. M., Verhé, R., Van Peteghem, C., & De Meulenaer, B. (2008). Optimization of the blanching process to reduce acrylamide in fried potatoes. LWT- Food Science and Technology, 41(9), 1648–1654.Mohsenin, N. M. (1986). Physical properties of plant and animal materials. Nueva York: Gordon and Breach.Moyano, P. C., & Pedreschi, F. (2006). Kinetics of oil uptake during frying of potato slices: effect of pre-treatments. LWT- Food Science and Technology, 39, 285–291.Ngadi, M. O., Wang, Y., Adedeji, A. A., & Raghavan, G. S. V. (2009). Effect of microwave pretreatment on mass transfer during deep-fat frying of chicken nugget. LWT- Food Science and Technology, 42(1), 438–440.Pedreschi, F., & Moyano, P. (2005). Oil uptake and texture development in fried potato slices. Journal of Food Engineering, 70(4), 557–563.Saguy, S., & Dana, D. (2003). Integrated approach to deep fat frying: engineering, nutrition, health and consumer aspects. Journal of Food Engineering, 56, 143–152.Troncoso, E., & Pedreschi, F. (2009). Modeling water loss and oil uptake during vacuum frying of pre-treated potato slices. LWT- Food Science and Technology, 42(6), 1164–1173
Whole-genome sequencing of multiple myeloma reveals oncogenic pathways are targeted somatically through multiple mechanisms.
Multiple myeloma (MM) is a biologically heterogeneous malignancy, however, the mechanisms underlying this complexity are incompletely understood. We report an analysis of the whole-genome sequencing of 765 MM patients from CoMMpass. By employing promoter capture Hi-C in naïve B-cells, we identify cis-regulatory elements (CREs) that represent a highly enriched subset of the non-coding genome in which to search for driver mutations. We identify regulatory regions whose mutation significantly alters the expression of genes as candidate non-coding drivers, including copy number variation (CNV) at CREs of MYC and single-nucleotide variants (SNVs) in a PAX5 enhancer. To better inform the interplay between non-coding driver mutations with other driver mechanisms, and their respective roles in oncogenic pathways, we extended our analysis identifying coding drivers in 40 genes, including 11 novel candidates. We demonstrate the same pathways can be targeted by coding and non-coding mutations; exemplified by IRF4 and PRDM1, along with BCL6 and PAX5, genes that are central to plasma cell differentiation. This study reveals new insights into the complex genetic alterations driving MM development and an enhanced understanding of oncogenic pathways
