19 research outputs found

    Validation of the GALS musculoskeletal screening exam for use in primary care: a pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As the proportion of the Canadian population ≥65 grows, so too does the prevalence of musculoskeletal (MSK) conditions. Approximately 20% of visits to family physicians occur as a result of MSK complaints. The GALS (Gait, Arms, Legs, and Spine) screening examination was developed to assist in the detection of MSK abnormalities. Although MSK exams are primarily performed by rheumatologists or other MSK specialists, expanding their use in primary health care may improve the detection of MSK conditions allowing for earlier treatment. The primary goal of this study was to evaluate the use of the GALS locomotor screen in primary care by comparing the results of assessments of family physicians with those of rheumatologists. The secondary goal was to examine the incidence of MSK disorders and assess the frequency with which new diagnoses not previously documented in patients' charts were identified.</p> <p>Methods</p> <p>Patients ≥65 years old recruited from an academic family health centre were examined by a rheumatologist and a family physician who recorded the appearance of each participant's gait and the appearance and movement of the arms, legs and spine by deeming them normal or abnormal. GALS scores were compared between physicians with the proportion of observed (P<sub>obs</sub>), positive (P<sub>pos</sub>) and negative (P<sub>neg</sub>) agreement being the primary outcomes. Kappa statistics were also calculated. Descriptive statistics were used to describe the number of "new" diagnoses by comparing rheumatologists' findings with each patient's family practice chart.</p> <p>Results</p> <p>A total of 99 patients consented to participate (92 with previously diagnosed MSK conditions). Results showed reasonable agreement between family physicians and rheumatologists; P<sub>obs </sub>= 0.698, P<sub>pos </sub>= 0.614 and P<sub>neg </sub>= 0.752. The coefficient of agreement (estimated Kappa) was 0.3675 for the composite GALS score. For individual components of the GALS exam, the highest agreement between family physicians and rheumatologists was in the assessment of gait and arm movement.</p> <p>Conclusion</p> <p>Previously reported increases in undiagnosed signs and symptoms of musculoskeletal conditions have highlighted the need for a simple yet sensitive screening exam for the identification of musculoskeletal abnormalities. Results of this study suggest that family physicians can efficiently use the GALS examination in the assessment of populations with a high proportion of musculoskeletal issues.</p

    Cord Blood CD4 T Cells Respond to Self Heat Shock Protein 60 (HSP60)

    Get PDF
    Contains fulltext : 95764.pdf (publisher's version ) (Open Access)BACKGROUND: To prevent harmful autoimmunity most immune responses to self proteins are controlled by central and peripheral tolerance. T cells specific for a limited set of self-proteins such as human heat shock protein 60 (HSP60) may contribute to peripheral tolerance. It is not known whether HSP60-specific T cells are present at birth and thus may play a role in neonatal tolerance. We studied whether self-HSP60 reactive T cells are present in cord blood, and if so, what phenotype these cells have. METHODOLOGY/PRINCIPAL FINDINGS: Cord blood mononuclear cells (CBMC) of healthy, full term neonates (n = 21), were cultured with HSP60 and Tetanus Toxoid (TT) to study antigen specific proliferation, cytokine secretion and up-regulation of surface markers. The functional capacity of HSP60-induced T cells was determined with in vitro suppression assays. Stimulation of CBMC with HSP60 led to CD4(+) T cell proliferation and the production of various cytokines, most notably IL-10, Interferon-gamma, and IL-6. HSP60-induced T cells expressed FOXP3 and suppressed effector T cell responses in vitro. CONCLUSION: Self-reactive HSP60 specific T cells are already present at birth. Upon stimulation with self-HSP60 these cells proliferate, produce cytokines and express FOXP3. These cells function as suppressor cells in vitro and thus they may be involved in the regulation of neonatal immune responses
    corecore