31 research outputs found

    Identification of Class I HLA T Cell Control Epitopes for West Nile Virus

    Get PDF
    The recent West Nile virus (WNV) outbreak in the United States underscores the importance of understanding human immune responses to this pathogen. Via the presentation of viral peptide ligands at the cell surface, class I HLA mediate the T cell recognition and killing of WNV infected cells. At this time, there are two key unknowns in regards to understanding protective T cell immunity: 1) the number of viral ligands presented by the HLA of infected cells, and 2) the distribution of T cell responses to these available HLA/viral complexes. Here, comparative mass spectroscopy was applied to determine the number of WNV peptides presented by the HLA-A*11:01 of infected cells after which T cell responses to these HLA/WNV complexes were assessed. Six viral peptides derived from capsid, NS3, NS4b, and NS5 were presented. When T cells from infected individuals were tested for reactivity to these six viral ligands, polyfunctional T cells were focused on the GTL9 WNV capsid peptide, ligands from NS3, NS4b, and NS5 were less immunogenic, and two ligands were largely inert, demonstrating that class I HLA reduce the WNV polyprotein to a handful of immune targets and that polyfunctional T cells recognize infections by zeroing in on particular HLA/WNV epitopes. Such dominant HLA/peptide epitopes are poised to drive the development of WNV vaccines that elicit protective T cells as well as providing key antigens for immunoassays that establish correlates of viral immunity. © 2013 Kaabinejadian et al

    Successful renal re-transplantation in the presence of pre-existing anti-DQ5 antibodies when there was zero mismatch at class I human leukocyte antigen A, B, & C: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Hyperacute rejection may be prevented by avoiding the transplantation of kidneys into patients with pre-existing anti-donor Class I human leukocyte antigen antibodies. However, the role of anti-donor-Class II-human leukocyte antigen-DQ antibodies is not established. The question is ever more relevant as more sensitive cross-matching techniques detect many additional antibodies during the final crossmatch. We now report successful renal transplantation of a patient who had pre-existing antibodies against his donor's human leukocyte antigen-DQ5.</p> <p>Case presentation</p> <p>Our patient, a Caucasian man, was 34 years of age when he received his first deceased donor renal transplant. After 8 years, his first transplant failed from chronic allograft dysfunction and an earlier bout of Banff 1A cellular rejection. The second deceased donor kidney transplant was initially allocated to the patient due to a 0 out of 6 mismatch. The B cell crossmatch was mildly positive, while the T Cell crossmatch was negative. Subsequent assays showed that the patient had preformed antibodies for human leukocyte antigen DQ5 against his second donor. Despite having preformed antibodies against the donor, the patient continues to have excellent allograft function two years after his second renal transplant.</p> <p>Conclusion</p> <p>The presence of pre-existing antibodies against human leukocyte antigen DQ5 does not preclude transplantation. The relevance of having other antibodies against class II human leukocyte antigens prior to transplantation remains to be studied.</p

    Antibodies against a Surface Protein of Streptococcus pyogenes Promote a Pathological Inflammatory Response

    Get PDF
    Streptococcal toxic shock syndrome (STSS) caused by Streptococcus pyogenes is a clinical condition with a high mortality rate despite modern intensive care. A key feature of STSS is excessive plasma leakage leading to hypovolemic hypotension, disturbed microcirculation and multiorgan failure. Previous work has identified a virulence mechanism in STSS where M1 protein of S. pyogenes forms complexes with fibrinogen that activate neutrophils to release heparin-binding protein (HBP), an inducer of vascular leakage. Here, we report a marked inter-individual difference in the response to M1 protein–induced HBP release, a difference found to be related to IgG antibodies directed against the central region of the M1 protein. To elicit massive HBP release, such antibodies need to be part of the M1 protein–fibrinogen complexes. The data add a novel aspect to bacterial pathogenesis where antibodies contribute to the severity of disease by promoting a pathologic inflammatory response
    corecore