4,662 research outputs found
Recommended from our members
Gender Inequities in the Multiple Sclerosis Community: A Call for Action.
Proceedings...
Anais e resumos dos trabalhos apresentados na II SIGEE.bitstream/item/152904/1/Second-International-Symposium-II-SIGEE.pdfCoordenador: Roberto Giolo de Almeida. Organizadores: PatrĂcia Perondi AnchĂŁo Oliveira; MaurĂcio Saito; Cleber Oliveira Soares; Lucas Galvan; Lucimara Chiari; Fabiana Villa Alves; Davi JosĂ© Bungenstab
Equilibrium configurations of two charged masses in General Relativity
An asymptotically flat static solution of Einstein-Maxwell equations which
describes the field of two non-extreme Reissner - Nordstr\"om sources in
equilibrium is presented. It is expressed in terms of physical parameters of
the sources (their masses, charges and separating distance). Very simple
analytical forms were found for the solution as well as for the equilibrium
condition which guarantees the absence of any struts on the symmetry axis. This
condition shows that the equilibrium is not possible for two black holes or for
two naked singularities. However, in the case when one of the sources is a
black hole and another one is a naked singularity, the equilibrium is possible
at some distance separating the sources. It is interesting that for
appropriately chosen parameters even a Schwarzschild black hole together with a
naked singularity can be "suspended" freely in the superposition of their
fields.Comment: 4 pages; accepted for publication in Phys. Rev.
Sensory Electrical Stimulation Improves Foot Placement during Targeted Stepping Post-Stroke
Proper foot placement is vital for maintaining balance during walking, requiring the integration of multiple sensory signals with motor commands. Disruption of brain structures post-stroke likely alters the processing of sensory information by motor centers, interfering with precision control of foot placement and walking function for stroke survivors. In this study, we examined whether somatosensory stimulation, which improves functional movements of the paretic hand, could be used to improve foot placement of the paretic limb. Foot placement was evaluated before, during, and after application of somatosensory electrical stimulation to the paretic foot during a targeted stepping task. Starting from standing, twelve chronic stroke participants initiated movement with the non-paretic limb and stepped to one of five target locations projected onto the floor with distances normalized to the paretic stride length. Targeting error and lower extremity kinematics were used to assess changes in foot placement and limb control due to somatosensory stimulation. Significant reductions in placement error in the medial–lateral direction (p = 0.008) were observed during the stimulation and post-stimulation blocks. Seven participants, presenting with a hip circumduction walking pattern, had reductions (p = 0.008) in the magnitude and duration of hip abduction during swing with somatosensory stimulation. Reductions in circumduction correlated with both functional and clinical measures, with larger improvements observed in participants with greater impairment. The results of this study suggest that somatosensory stimulation of the paretic foot applied during movement can improve the precision control of foot placement
Fr-TM-align: a new protein structural alignment method based on fragment alignments and the TM-score
©2008 Pandit and Skolnick; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This article is available from: http://www.biomedcentral.com/1471-2105/9/531doi:10.1186/1471-2105-9-531Background: Protein tertiary structure comparisons are employed in various fields of
contemporary structural biology. Most structure comparison methods involve generation of an
initial seed alignment, which is extended and/or refined to provide the best structural superposition
between a pair of protein structures as assessed by a structure comparison metric. One such
metric, the TM-score, was recently introduced to provide a combined structure quality measure
of the coordinate root mean square deviation between a pair of structures and coverage. Using the
TM-score, the TM-align structure alignment algorithm was developed that was often found to have
better accuracy and coverage than the most commonly used structural alignment programs;
however, there were a number of situations when this was not true.
Results: To further improve structure alignment quality, the Fr-TM-align algorithm has been
developed where aligned fragment pairs are used to generate the initial seed alignments that are
then refined using dynamic programming to maximize the TM-score. For the assessment of the
structural alignment quality from Fr-TM-align in comparison to other programs such as CE and TMalign,
we examined various alignment quality assessment scores such as PSI and TM-score. The
assessment showed that the structural alignment quality from Fr-TM-align is better in comparison
to both CE and TM-align. On average, the structural alignments generated using Fr-TM-align have
a higher TM-score (~9%) and coverage (~7%) in comparison to those generated by TM-align. Fr-
TM-align uses an exhaustive procedure to generate initial seed alignments. Hence, the algorithm is
computationally more expensive than TM-align.
Conclusion: Fr-TM-align, a new algorithm that employs fragment alignment and assembly provides
better structural alignments in comparison to TM-align. The source code and executables of Fr-
TM-align are freely downloadable at: http://cssb.biology.gatech.edu/skolnick/files/FrTMalign/
Autonomous Irrigation Management in Decision Agriculture
In this chapter, the important application of autonomous irrigation management in the field decision agriculture is discussed. The different types of sensor-guided irrigation systems are presented that includes center pivot systems and drip irrigation systems. Their sensing and actuator components are with detailed focus on real-time decision-making and integration to the cloud. This chapter also presents irrigation control systems which takes, as an input, soil moisture and temperature from IOUT and weather data from Internet and communicate with center pivot based irrigation systems. Moreover, the system architecture is explored where development of the nodes including sensing and actuators is presented. Finally, the chapter concludes with comprehensive discussion of adaptive control systems, software, and visualization system design
- …