15 research outputs found

    SREB, a GATA Transcription Factor That Directs Disparate Fates in Blastomyces dermatitidis Including Morphogenesis and Siderophore Biosynthesis

    Get PDF
    Blastomyces dermatitidis belongs to a group of human pathogenic fungi that exhibit thermal dimorphism. At 22°C, these fungi grow as mold that produce conidia or infectious particles, whereas at 37°C they convert to budding yeast. The ability to switch between these forms is essential for virulence in mammals and may enable these organisms to survive in the soil. To identify genes that regulate this phase transition, we used Agrobacterium tumefaciens to mutagenize B. dermatitidis conidia and screened transformants for defects in morphogenesis. We found that the GATA transcription factor SREB governs multiple fates in B. dermatitidis: phase transition from yeast to mold, cell growth at 22°C, and biosynthesis of siderophores under iron-replete conditions. Insertional and null mutants fail to convert to mold, do not accumulate significant biomass at 22°C, and are unable to suppress siderophore biosynthesis under iron-replete conditions. The defect in morphogenesis in the SREB mutant was independent of exogenous iron concentration, suggesting that SREB promotes the phase transition by altering the expression of genes that are unrelated to siderophore biosynthesis. Using bioinformatic and gene expression analyses, we identified candidate genes with upstream GATA sites whose expression is altered in the null mutant that may be direct or indirect targets of SREB and promote the phase transition. We conclude that SREB functions as a transcription factor that promotes morphogenesis and regulates siderophore biosynthesis. To our knowledge, this is the first gene identified that promotes the conversion from yeast to mold in the dimorphic fungi, and may shed light on environmental persistence of these pathogens

    Neural Network Development in Late Adolescents during Observation of Risk-Taking Action

    Get PDF
    Emotional maturity and social awareness are important for adolescents, particularly college students beginning to face the challenges and risks of the adult world. However, there has been relatively little research into personality maturation and psychological development during late adolescence and the neural changes underlying this development. We investigated the correlation between psychological properties (neuroticism, extraversion, anxiety, and depression) and age among late adolescents (n = 25, from 18 years and 1 month to 22 years and 8 months). The results revealed that late adolescents became less neurotic, less anxious, less depressive and more extraverted as they aged. Participants then observed video clips depicting hand movements with and without a risk of harm (risk-taking or safe actions) during functional magnetic resonance imaging (fMRI). The results revealed that risk-taking actions elicited significantly stronger activation in the bilateral inferior parietal lobule, temporal visual regions (superior/middle temporal areas), and parieto-occipital visual areas (cuneus, middle occipital gyri, precuneus). We found positive correlations of age and extraversion with neural activation in the insula, middle temporal gyrus, lingual gyrus, and precuneus. We also found a negative correlation of age and anxiety with activation in the angular gyrus, precentral gyrus, and red nucleus/substantia nigra. Moreover, we found that insula activation mediated the relationship between age and extraversion. Overall, our results indicate that late adolescents become less anxious and more extraverted with age, a process involving functional neural changes in brain networks related to social cognition and emotional processing. The possible neural mechanisms of psychological and social maturation during late adolescence are discussed

    Diffraction enhanced breast imaging: Assessment of realistic system requirements to improve the diagnostic capabilities of mammography

    No full text
    A detectable difference in x-ray diffraction data of healthy and diseased breast tissues has been observed This information can be used to generate images with a higher contrast than that of conventional transmission mammography. A diffraction enhanced breast imaging (DEBI) system that simultaneously combines transmission and diffraction breast images is currently being developed. This paper presents the imaging system requirements for a clinical DEBI system. The DEBI imaging system employs a phosphor coated L3Vision CCD camera. The DEBI principle has been assessed at the SYRMEP synchrotron beamline (Elettra, Trieste) and with a purpose built mammographic x-ray imaging unit Diffraction enhanced images have been obtained of realistic breast tissue phantoms, consisting of 4cm thick slabs of excised breast tissue containing embedded carcinomas. The images were obtained at pre-determined momentum transfer values, allowing some tissue characterization to be achieved during imaging, as well as optimizing image contrast. This paper presents the current state of the project The spatial resolution of the diffraction images have been studied using test phantoms and suggestions are made for the collimation systems necessary for a clinical system. A correction procedure applied to the diffraction images is also presented

    X-Ray diffraction CT of excised breast tissue sections: First results from elettra

    No full text
    The scattering properties of breast tissue have been suggested as a diagnostic tool in the early detection of breast cancer. To aid in the development of a clinical imaging system based upon these properties, a series of breast tissue samples have been subjected to diffraction microCT using the SYRMEP beamline at Elettra, Italy. Using 18 keV photons, both transmission and diffraction CT data sets were collected using a specially designed microCT system. This system was based around a finely collimated, x-ray sensitive L3Vision CCD camera and a simple rotary stage controlled using Lab View software. The images were reconstructed using routines developed in IDL. This paper presents both transmission and diffraction CT images of three samples. The samples were excised breast tissue sections known to contain either tumour, normal tissue adjacent to the tumour or a mixture of each. The results demonstrate that diffraction microCT can be used to evaluate the structure of breast tissue tumours. Registration of the transmission and diffraction CT images demonstrated that both techniques showed the same principle features in the sample and allowed the main components to be identified. However, the diffraction images demonstrated an average increase in image contrast over the transmission images. Further improvements in the collimator design used in the experiments will need to be made if detailed structure is to be seen
    corecore