796 research outputs found
Experience-dependent structural plasticity at pre- and postsynaptic sites of layer 2/3 cells in developing visual cortex
The developing brain can respond quickly to altered sensory experience by circuit reorganization. During a critical period in early life, neurons in the primary visual cortex rapidly lose responsiveness to an occluded eye and come to respond better to the open eye. While physiological and some of the molecular mechanisms of this process have been characterized, its structural basis, except for the well-known changes in the thalamocortical projection, remains obscure. To elucidate the relationship between synaptic remodeling and functional changes during this experience-dependent process, we used 2-photon microscopy to image synaptic structures of sparsely labeled layer 2/3 neurons in the binocular zone of mouse primary visual cortex. Anatomical changes at presynaptic and postsynaptic sites in mice undergoing monocular visual deprivation (MD) were compared to those in control mice with normal visual experience. We found that postsynaptic spines remodeled quickly in response to MD, with neurons more strongly dominated by the deprived eye losing more spines. These postsynaptic changes parallel changes in visual responses during MD and their recovery after restoration of binocular vision. In control animals with normal visual experience, the formation of presynaptic boutons increased during the critical period and then declined. MD affected bouton formation, but with a delay, blocking it after 3 d. These findings reveal intracortical anatomical changes in cellular layers of the cortex that can account for rapid activity-dependent plasticity
The Light Stop Scenario from Gauge Mediation
In this paper we embed the light stop scenario, a MSSM framework which
explains the baryon asymmetry of the universe through a strong first order
electroweak phase transition, in a top-down approach. The required low energy
spectrum consists in the light SM-like Higgs, the right-handed stop, the
gauginos and the Higgsinos while the remaining scalars are heavy. This spectrum
is naturally driven by renormalization group evolution starting from a heavy
scalar spectrum at high energies. The latter is obtained through a
supersymmetry-breaking mix of gauge mediation, which provides the scalars
masses by new gauge interactions, and gravity mediation, which generates
gaugino and Higgsino masses. This supersymmetry breaking also explains the \mu\
and B_\mu\ parameters necessary for electroweak breaking and predicts small
tri-linear mixing terms A_t in agreement with electroweak baryogenesis
requirements. The minimal embedding predicts a Higgs mass around its
experimental lower bound and by a small extension higher masses m_H\lesssim 127
GeV can be accommodated.Comment: 20 pages, 3 figures; v2: changes in the conventions; v3: more details
on the Higgs mass prediction, version published in JHE
Flavour physics constraints in the BMSSM
We study the implications of the presence of the two leading-order,
non-renormalizable operators in the Higgs sector of the MSSM to flavour physics
observables. We identify the constraints of flavour physics on the parameters
of the BMSSM when we: a) focus on a region of parameters for which electroweak
baryogenesis is feasible, b) use a CMSSM-like parametrization, and c) consider
the case of a generic NUHM-type model. We find significant differences as
compared to the standard MSSM case.Comment: 22 pages, 7 figure
Discovering the composite Higgs through the decay of a heavy fermion
A possible composite nature of the Higgs could be revealed at the early stage
of the LHC, by analyzing the channels where the Higgs is produced from the
decay of a heavy fermion. The Higgs production from a singly-produced heavy
bottom, in particular, proves to be a promising channel. For a value \lambda=3
of the Higgs coupling to a heavy bottom, for example, we find that, considering
a 125 GeV Higgs which decays into a pair of b-quarks, a discovery is possible
at the 8 TeV LHC with 30 fb^{-1} if the heavy bottom is lighter than roughly
530 GeV (while an observation is possible for heavy bottom masses up to 650
GeV). Such a relatively light heavy bottom is realistic in composite Higgs
models of the type considered and, up to now, experimentally allowed. At
\sqrt{s}=14 TeV the LHC sensitivity on the channel increases significantly.
With \lambda=3 a discovery can occur, with 100 fb^{-1}, for heavy bottom masses
up to 1040 GeV. In the case the heavy bottom was as light as 500 GeV, the 14
TeV LHC would be sensitive to the measure of the \lambda\ coupling in basically
the full range \lambda>1 predicted by the theory.Comment: 25 pp. v2: Minor changes. v3: Version accepted for publication in
JHEP. v4: typos fixe
Naturalness bounds in extensions of the MSSM without a light Higgs boson
Adopting a bottom-up point of view, we make a comparative study of the
simplest extensions of the MSSM with extra tree level contributions to the
lightest Higgs boson mass. We show to what extent a relatively heavy Higgs
boson, up to 200-350 GeV, can be compatible with data and naturalness. The
price to pay is that the theory undergoes some change of regime at a relatively
low scale. Bounds on these models come from electroweak precision tests and
naturalness, which often requires the scale at which the soft terms are
generated to be relatively low.Comment: 18 pages, 5 figures. v2: minor revision, added references. v3,v4:
some numerical correction
New Higgs Production Mechanism in Composite Higgs Models
Composite Higgs models are only now starting to be probed at the Large Hadron
Collider by Higgs searches. We point out that new resonances, abundant in these
models, can mediate new production mechanisms for the composite Higgs. The new
channels involve the exchange of a massive color octet and single production of
new fermion resonances with subsequent decays into the Higgs and a Standard
Model quark. The sizable cross section and very distinctive kinematics allow
for a very clean extraction of the signal over the background with high
statistical significance. Heavy gluon masses up to 2.8 TeV can be probed with
data collected during 2012 and up to 5 TeV after the energy upgrade to
TeV.Comment: 27 pages, 22 figures. V2: typos corrected, matches published versio
Are Dutch dental students and dental-care providers competent prescribers of drugs?
Dental students and dental-care providers should be able to prescribe drugs safely and effectively. As it is unknown whether this is the case, we assessed and compared the prescribing competence of dental students and dental-care providers in the Netherlands. In 2017, all Dutch final-year dental students and a random sample of all qualified general dental practitioners and dental specialists (oral and maxillofacial surgeons and orthodontists) were invited to complete validated prescribing knowledge-assessment and skills-assessment instruments. The knowledge assessment comprised 40 multiple-choice questions covering important drug topics. The skills assessment comprised three common clinical case scenarios. For the knowledge assessment, the response rates were 26 (20%) dental students, 28 (8%) general dental practitioners, and 19 (19%) dental specialists, and for the skills assessment the response rates were 14 (11%) dental students, eight (2%) general dental practitioners, and eight (8%) dental specialists. Dental specialists had higher knowledge scores (78% correct answers) than either dental practitioners (69% correct answers) or dental students (69% correct answers). A substantial proportion of all three groups made inappropriate treatment choices (35%-49%) and prescribing errors (47%-70%). Although there were some differences, dental students and dental-care providers in the Netherlands lack prescribing competence, which is probably because of poor prescribing education during under- and postgraduate dental training. Educational interventions are urgently needed
The Custodial Randall-Sundrum Model: From Precision Tests to Higgs Physics
We reexamine the Randall-Sundrum (RS) model with enlarged gauge symmetry
SU(2)_L x SU(2)_R x U(1)_X x P_LR in the presence of a brane-localized Higgs
sector. In contrast to the existing literature, we perform the Kaluza-Klein
(KK) decomposition within the mass basis, which avoids the truncation of the KK
towers. Expanding the low-energy spectrum as well as the gauge couplings in
powers of the Higgs vacuum expectation value, we obtain analytic formulas which
allow for a deep understanding of the model-specific protection mechanisms of
the T parameter and the left-handed Z-boson couplings. In particular, in the
latter case we explain which contributions escape protection and identify them
with the irreducible sources of P_LR symmetry breaking. We furthermore show
explicitly that no protection mechanism is present in the charged-current
sector confirming existing model-independent findings. The main focus of the
phenomenological part of our work is a detailed discussion of Higgs-boson
couplings and their impact on physics at the CERN Large Hadron Collider. For
the first time, a complete one-loop calculation of all relevant Higgs-boson
production and decay channels is presented, incorporating the effects stemming
from the extended electroweak gauge-boson and fermion sectors.Comment: 74 pages, 13 figures, 3 tables. v2: Matches version published in JHE
Decoupling property of the supersymmetric Higgs sector with four doublets
In supersymmetric standard models with multi Higgs doublet fields,
selfcoupling constants in the Higgs potential come only from the D-terms at the
tree level. We investigate the decoupling property of additional two heavier
Higgs doublet fields in the supersymmetric standard model with four Higgs
doublets. In particular, we study how they can modify the predictions on the
quantities well predicted in the minimal supersymmetric standard model (MSSM),
when the extra doublet fields are rather heavy to be measured at collider
experiments. The B-term mixing between these extra heavy Higgs bosons and the
relatively light MSSM-like Higgs bosons can significantly change the
predictions in the MSSM such as on the masses of MSSM-like Higgs bosons as well
as the mixing angle for the two light CP-even scalar states. We first give
formulae for deviations in the observables of the MSSM in the decoupling region
for the extra two doublet fields. We then examine possible deviations in the
Higgs sector numerically, and discuss their phenomenological implications.Comment: 26 pages, 24 figures, text sligtly modified,version to appear in
Journal of High Energy Physic
The Dark Side of the Electroweak Phase Transition
Recent data from cosmic ray experiments may be explained by a new GeV scale
of physics. In addition the fine-tuning of supersymmetric models may be
alleviated by new O(GeV) states into which the Higgs boson could decay. The
presence of these new, light states can affect early universe cosmology. We
explore the consequences of a light (~ GeV) scalar on the electroweak phase
transition. We find that trilinear interactions between the light state and the
Higgs can allow a first order electroweak phase transition and a Higgs mass
consistent with experimental bounds, which may allow electroweak baryogenesis
to explain the cosmological baryon asymmetry. We show, within the context of a
specific supersymmetric model, how the physics responsible for the first order
phase transition may also be responsible for the recent cosmic ray excesses of
PAMELA, FERMI etc. We consider the production of gravity waves from this
transition and the possible detectability at LISA and BBO
- …