6 research outputs found

    Conduction in ulnar nerve bundles that innervate the proximal and distal muscles: a clinical trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study aims to investigate and compare the conduction parameters of nerve bundles in the ulnar nerve that innervates the forearm muscles and hand muscles; routine electromyography study merely evaluates the nerve segment of distal (hand) muscles.</p> <p>Methods</p> <p>An electrophysiological evaluation, consisting of velocities, amplitudes, and durations of ulnar nerve bundles to 2 forearm muscles and the hypothenar muscles was performed on the same humeral segment.</p> <p>Results</p> <p>The velocities and durations of the compound muscle action potential (CMAP) of the ulnar nerve bundle to the proximal muscles were greater than to distal muscles, but the amplitudes were smaller.</p> <p>Conclusions</p> <p>Bundles in the ulnar nerve of proximal muscles have larger neuronal bodies and thicker nerve fibers than those in the same nerve in distal muscles, and their conduction velocities are higher. The CMAPs of proximal muscles also have smaller amplitudes and greater durations. These findings can be attributed to the desynchronization that is caused by a wider range of distribution in nerve fiber diameters.</p> <p>Conduction parameters of nerve fibers with different diameters in the same peripheral nerve can be estimated.</p

    Studies on bicuculline binding sites on neuronal membrane using fluorescent antibody technique: Comparative binding of gaba and bicuculline

    No full text
    Highly purified fluorescent labelled anti-bicuculline antibodies were used to mark bicuculline binding sites in cerebral cortex of monkey brain. Specific binding of bicuculline could be demonstrated in the synaptosomal fraction, when bicuculline was added both Image and Image . Addition of γ-aminobutyric acid (GABA) to the bicucullinised membrane led to a decrease in fluorescence indicating same receptor loci and establishing GABA-bicuculline antagonism at a molecular level

    Control of the Access of Afferent Activity to Somatosensory Pathways

    No full text
    corecore