21 research outputs found

    Antibiotics Increase Gut Metabolism and Antioxidant Proteins and Decrease Acute Phase Response and Necrotizing Enterocolitis in Preterm Neonates

    Get PDF
    Background: The appropriate use of antibiotics for preterm infants, which are highly susceptible to develop necrotizing enterocolitis (NEC), is not clear. While antibiotic therapy is commonly used in neonates with NEC symptoms and sepsis, it remains unknown how antibiotics may affect the intestine and NEC sensitivity. We hypothesized that broad-spectrum antibiotics, given immediately after preterm birth, would reduce NEC sensitivity and support intestinal protective mechanisms. Methodology/Principal Findings: Preterm pigs were treated with antibiotics for 5 d (oral and systemic doses of gentamycin, ampicillin and metrodinazole; AB group) and compared with untreated pigs. Only the untreated pigs showed evidence of NEC lesions and reduced digestive function, as indicated by lowered villus height and activity of brush border enzymes. In addition, 53 intestinal and 22 plasma proteins differed in expression between AB and untreated pigs. AB treatment increased the abundance of intestinal proteins related to carbohydrate and protein metabolism, actin filaments, iron homeostasis and antioxidants. Further, heat shock proteins and the complement system were affected suggesting that all these proteins were involved in the colonization-dependent early onset of NEC. In plasma, acute phase proteins (haptoglobin, complement proteins) decreased, while albumin, cleaved C3, ficolin and transferrin increased. Conclusions/Significance: Depressed bacterial colonization following AB treatment increases mucosal integrity and reduces bacteria-associated inflammatory responses in preterm neonates. The plasma proteins C3, ficolin, and transferrin are potential biomarkers of the colonization-dependent NEC progression in preterm neonates. © 2012 Jiang et al.published_or_final_versio

    Branched Chain Fatty Acids Reduce the Incidence of Necrotizing Enterocolitis and Alter Gastrointestinal Microbial Ecology in a Neonatal Rat Model

    Get PDF
    Branched chain fatty acids (BCFA) are found in the normal term human newborn's gut, deposited as major components of vernix caseosa ingested during late fetal life. We tested the hypothesis that premature infants' lack of exposure to gastrointestinal (GI) BCFA is associated with their microbiota and risk for necrotizing enterocolitis (NEC) using a neonatal rat model.Pups were collected one day before scheduled birth. The pups were exposed to asphyxia and cold stress to induce NEC. Pups were assigned to one of three experimental treatments. DF (dam-fed); Control, hand-fed rat milk substitute; BCFA, hand-fed rat milk substitute with 20%w/w BCFA. Total fat was equivalent (11%wt) for both the Control and BCFA groups. Cecal microbiota were characterized by 16S rRNA gene pyrosequencing, and intestinal injury, ileal cytokine and mucin gene expression, interleukin-10 (IL-10) peptide immunohistochemistry, and BCFA uptake in ileum phospholipids, serum and liver were assessed.NEC incidence was reduced by over 50% in the BCFA group compared to the Control group as assessed in ileal tissue; microbiota differed among all groups. BCFA-fed pups harbored greater levels of BCFA-associated Bacillus subtilis and Pseudomonas aeruginosa compared to Controls. Bacillus subtilis levels were five-fold greater in healthy pups compared to pups with NEC. BCFA were selectively incorporated into ileal phospholipids, serum and liver tissue. IL-10 expression increased three-fold in the BCFA group versus Controls and no other inflammatory or mucosal mRNA markers changed.At constant dietary fat level, BCFA reduce NEC incidence and alter microbiota composition. BCFA are also incorporated into pup ileum where they are associated with enhanced IL-10 and may exert other specific effects
    corecore