763 research outputs found
Heat transfer over a nonlinearly stretching sheet with non-uniform heat source and variable wall temperature
In this paper we study the flow and heat transfer characteristics of a viscous fluid over a nonlinearly stretching sheet in the presence of non-uniform heat source and variable wall temperature. A similarity transformation is used to transform the governing partial differential equations to a system of nonlinear ordinary differential equations. An efficient numerical shooting technique with a fourth-order Runge-Kutta scheme is used to obtain the solution of the boundary value problem. The effects of various parameters (such as the power law index n, the Prandtl number Pr, the wall temperature parameter λ, the space dependent heat source parameter A* and the temperature dependent heat source parameter B*) on the heat transfer characteristics are analyzed. The numerical results for the heat transfer coefficient (the Nusselt number) are presented for several sets of values of the parameters and are discussed. The results reveal many interesting behaviors that warrant further study on the effects of non-uniform heat source and the variable wall temperature on the heat transfer phenomena at the nonlinear stretching sheet. © 2011 Elsevier Ltd. All rights reserved.postprin
Preparedness for Open Science through Research Data Management at the University of Zambia in COVID-19 and Post-COVID Eras
This paper presents the findings of a study on readiness of the University of Zambia in participating in research data management services in the COVID-19 and post Covid eras. The study adopted a qualitative research method and employed purposive sampling. In-depth interviews were conducted with key informants in the University. Findings reveal a lack of awareness and knowledge about research data management among senior officers and inadequate skills among library staff. On a positive note, the University has a robust information and communication technology (ICT) infrastructure supported by qualified information technology (IT) staff. It was further discovered that the University did not have a research data management policy. This paper provides a framework for the University to operationalize research data management services. The study recommends development of a research data management policy; conducting awareness campaigns; investing in skills training for library staff, and constituting research teams to deal with issues of research data management
Viability of MSSM scenarios at very large tan(beta)
We investigate the MSSM with very large tan(beta) > 50, where the fermion
masses are strongly affected by loop-induced couplings to the "wrong" Higgs,
imposing perturbative Yukawa couplings and constraints from flavour physics.
Performing a low-energy scan of the MSSM with flavour-blind soft terms, we find
that the branching ratio of B->tau nu and the anomalous magnetic moment of the
muon are the strongest constraints at very large tan(beta) and identify the
viable regions in parameter space. Furthermore we determine the scale at which
the perturbativity of the Yukawa sector breaks down, depending on the
low-energy MSSM parameters. Next, we analyse the very large tan(beta) regime of
General Gauge Mediation (GGM) with a low mediation scale. We investigate the
requirements on the parameter space and discuss the implied flavour
phenomenology. We point out that the possibility of a vanishing Bmu term at a
mediation scale M = 100 TeV is challenged by the experimental data on B->tau nu
and the anomalous magnetic moment of the muon.Comment: 29 pages, 7 figures. v2: discussion in sections 1 and 4 expanded,
conclusions unchanged. Matches version published in JHE
A Comprehensive Analysis of Electric Dipole Moment Constraints on CP-violating Phases in the MSSM
We analyze the constraints placed on individual, flavor diagonal CP-violating
phases in the minimal supersymmetric extension of the Standard Model (MSSM) by
current experimental bounds on the electric dipole moments (EDMs) of the
neutron, Thallium, and Mercury atoms. We identify the four CP-violating phases
that are individually highly constrained by current EDM bounds, and we explore
how these phases and correlations among them are constrained by current EDM
limits. We also analyze the prospective implications of the next generation of
EDM experiments. We point out that all other CP-violating phases in the MSSM
are not nearly as tightly constrained by limits on the size of EDMs. We
emphasize that a rich set of phenomenological consequences is potentially
associated with these generically large EDM-allowed phases, ranging from B
physics, electroweak baryogenesis, and signals of CP-violation at the CERN
Large Hadron Collider and at future linear colliders. Our numerical study takes
into account the complete set of contributions from one- and two-loop EDMs of
the electron and quarks, one- and two-loop Chromo-EDMs of quarks, the Weinberg
3-gluon operator, and dominant 4-fermion CP-odd operator contributions,
including contributions which are both included and not included yet in the
CPsuperH2.0 package. We also introduce an open-source numerical package, 2LEDM,
which provides the complete set of two-loop electroweak diagrams contributing
to the electric dipole moments of leptons and quarks.Comment: 23 pages, 11 figures; v2: references added, minor change
Precision Gauge Unification from Extra Yukawa Couplings
We investigate the impact of extra vector-like GUT multiplets on the
predicted value of the strong coupling. We find in particular that Yukawa
couplings between such extra multiplets and the MSSM Higgs doublets can resolve
the familiar two-loop discrepancy between the SUSY GUT prediction and the
measured value of alpha_3. Our analysis highlights the advantages of the
holomorphic scheme, where the perturbative running of gauge couplings is
saturated at one loop and further corrections are conveniently described in
terms of wavefunction renormalization factors. If the gauge couplings as well
as the extra Yukawas are of O(1) at the unification scale, the relevant
two-loop correction can be obtained analytically. However, the effect persists
also in the weakly-coupled domain, where possible non-perturbative corrections
at the GUT scale are under better control.Comment: 26 pages, LaTeX. v6: Important early reference adde
Higgs production in CP-violating supersymmetric cascade decays: probing the `open hole' at the Large Hadron Collider
A benchmark CP-violating supersymmetric scenario (known as 'CPX-scenario' in
the literature) is studied in the context of the Large Hadron Collider (LHC).
It is shown that the LHC, with low to moderate accumulated luminosity, will be
able to probe the existing `hole' in the - plane, which
cannot be ruled out by the LEP data. We explore the parameter space with
cascade decay of third generation squarks and gluino with CP-violating decay
branching fractions. We propose a multi-channel analysis to probe this
parameter space some of which are background free at an integrated luminosity
of 5-10 fb. Specially, multi-lepton final states (3\l,\, 4\l and like
sign di-lepton) are almost background free and have reach for the
corresponding signals with very early data of LHC for both 14 TeV and 7 TeV
center of mass energy.Comment: 24 pages, 9 figures, references added as in the journal versio
CP violation in sbottom decays
We study CP asymmetries in two-body decays of bottom squarks into charginos
and tops. These asymmetries probe the SUSY CP phases of the sbottom and the
chargino sector in the Minimal Supersymmetric Standard Model. We identify the
MSSM parameter space where the CP asymmetries are sizeable, and analyze the
feasibility of their observation at the LHC. As a result, potentially
detectable CP asymmetries in sbottom decays are found, which motivates further
detailed experimental studies for probing the SUSY CP phases.Comment: 29 pages, 7 figure
Electroweak Baryogenesis and Dark Matter with an approximate R-symmetry
It is well known that R-symmetric models dramatically alleviate the SUSY
flavor and CP problems. We study particular modifications of existing
R-symmetric models which share the solution to the above problems, and have
interesting consequences for electroweak baryogenesis and the Dark Matter (DM)
content of the universe. In particular, we find that it is naturally possible
to have a strongly first-order electroweak phase transition while
simultaneously relaxing the tension with EDM experiments. The R-symmetry (and
its small breaking) implies that the gauginos (and the neutralino LSP) are
pseudo-Dirac fermions, which is relevant for both baryogenesis and DM. The
singlet superpartner of the U(1)_Y pseudo-Dirac gaugino plays a prominent role
in making the electroweak phase transition strongly first-order. The
pseudo-Dirac nature of the LSP allows it to behave similarly to a Dirac
particle during freeze-out, but like a Majorana particle for annihilation today
and in scattering against nuclei, thus being consistent with current
constraints. Assuming a standard cosmology, it is possible to simultaneously
have a strongly first-order phase transition conducive to baryogenesis and have
the LSP provide the full DM relic abundance, in part of the allowed parameter
space. However, other possibilities for DM also exist, which are discussed. It
is expected that upcoming direct DM searches as well as neutrino signals from
DM annihilation in the Sun will be sensitive to this class of models.
Interesting collider and Gravity-wave signals are also briefly discussed.Comment: 50 pages, 10 figure
Low-Energy Probes of a Warped Extra Dimension
We investigate a natural realization of a light Abelian hidden sector in an
extended Randall-Sundrum (RS) model. In addition to the usual RS bulk we
consider a second warped space containing a bulk U(1)_x gauge theory with a
characteristic IR scale of order a GeV. This Abelian hidden sector can couple
to the standard model via gauge kinetic mixing on a common UV brane. We show
that if such a coupling induces significant mixing between the lightest U(1)_x
gauge mode and the standard model photon and Z, it can also induce significant
mixing with the heavier U(1)_x Kaluza-Klein (KK) modes. As a result it might be
possible to probe several KK modes in upcoming fixed-target experiments and
meson factories, thereby offering a new way to investigate the structure of an
extra spacetime dimension.Comment: 26 pages, 1 figure, added references, corrected minor typos, same as
journal versio
Condensate cosmology in O'Raifeartaigh models
Flat directions charged under an R-symmetry are a generic feature of
O'Raifeartaigh models. Non-topological solitons associated with this symmetry,
R-balls, are likely to form through the fragmentation of a condensate, itself
created by soft terms induced during inflation. In gravity mediated SUSY
breaking R-balls decay to gravitinos, reheating the universe. For gauge
mediation R-balls can provide a good dark matter candidate. Alternatively they
can decay, either reheating or cooling the universe. Conserved R-symmetry
permits decay to gravitinos or gauginos, whereas spontaneously broken
R-symmetry results in decay to visible sector gauge bosons.Comment: 29 pages, 5 figures. Comments and references added, accepted for
publication in JHE
- …