13 research outputs found

    The indentation response of Nickel nano double gyroid lattices

    Get PDF
    The indentation response of Nickel nano double gyroid films has been measured using a Berkovich nanoindenter and the effective mechanical properties of the Ni double gyroid lattices inferred via a multi-scale finite element analysis. The 1μm thick double gyroid films were manufactured by block copolymer self-assembly followed by electrodeposition of the Ni resulting in two interpenetrating single gyroids of opposite chirality, an overall relative density of 38% and a cell size of about 45 nm. The measured hardness was ∼0.6 GPa with no discernable indentation size effect. A multi-scale finite element (FE) analysis revealed that the uniaxial compressive strength is approximately equal to the hardness for this compressible lattice. Thus, the 38% relative density Ni double gyroid has a strength equal to or greater than the strongest fully dense bulk Ni alloys. The FE calculations revealed that this was a consequence of that fact that the Ni in the 13 nm gyroid struts was essentially dislocation free and had a strength of about 5.7 GPa, i.e. approaching the theoretical strength value of Ni. The measurements and calculations reported here suggest that in spite of the nano gyroids having a bending-dominated topology they attain strengths higher than those reported for stretching-dominated micron scale lattice materials made via 3D printing. We thus argue that relatively fast and easy self-assembly processes are a competitive alternative to 3D printing manufacture methods for making high strength lattice materials

    Luminescent surfaces with tailored angular emission for compact dark-field imaging devices

    Get PDF
    Dark-field microscopy is a standard imaging technique widely employed in biology that provides high image contrast for a broad range of unstained specimens1. Unlike bright-field microscopy, it accentuates high spatial frequencies and can therefore be used to emphasize and resolve small features. However, the use of dark-field microscopy for reliable analysis of blood cells, bacteria, algae and other marine organisms often requires specialized, bulky microscope systems, as well as expensive additional components, such as dark-field-compatible objectives or condensers2,3. Here, we propose to simplify and downsize dark-field microscopy equipment by generating the high-angle illumination cone required for dark-field microscopy directly within the sample substrate. We introduce a luminescent photonic substrate with a controlled angular emission profile and demonstrate its ability to generate high-contrast dark-field images of micrometre-sized living organisms using standard optical microscopy equipment. This new type of substrate forms the basis for miniaturized lab-on-chip dark-field imaging devices that are compatible with simple and compact light microscopes
    corecore