17 research outputs found

    Self-Built Houses (SBH) in Dhaka City

    No full text

    Mapping of Candidate Genes Involved in Bud Dormancy and Flowering Time in Sweet Cherry (Prunus avium)

    No full text
    The timing of flowering in perennial plants is crucial for their survival in temperate climates and is regulated by the duration of bud dormancy. Bud dormancy release and bud break depend on the perception of cumulative chilling during endodormancy and heat during the bud development. The objectives of this work were to identify candidate genes involved in dormancy and flowering processes in sweet cherry, their mapping in two mapping progenies 'Regina' × 'Garnet' and 'Regina' × 'Lapins', and to select those candidate genes which co-localized with quantitative trait loci (QTLs) associated with temperature requirements for bud dormancy release and flowering. Based on available data on flowering processes in various species, a list of 79 candidate genes was established. The peach and sweet cherry orthologs were identified and primers were designed to amplify sweet cherry candidate gene fragments. Based on the amplified sequences of the three parents of the mapping progenies, SNPs segregations in the progenies were identified. Thirty five candidate genes were genetically mapped in at least one of the two progenies and all were in silico mapped. Co-localization between candidate genes and QTLs associated with temperature requirements and flowering date were identified for the first time in sweet cherry. The allelic composition of the candidate genes located in the major QTL for heat requirements and flowering date located on linkage group 4 have a significant effect on these two traits indicating their potential use for breeding programs in sweet cherry to select new varieties adapted to putative future climatic conditions

    Field-grown miR156 transgenic switchgrass reproduction, yield, global gene expression analysis, and bioconfinement

    Get PDF
    Abstract Background Genetic engineering has been effective in altering cell walls for biofuel production in the bioenergy crop, switchgrass (Panicum virgatum). However, regulatory issues arising from gene flow may prevent commercialization of engineered switchgrass in the eastern United States where the species is native. Depending on its expression level, microRNA156 (miR156) can reduce, delay, or eliminate flowering, which may serve to decrease transgene flow. In this unique field study of transgenic switchgrass that was permitted to flower, two low (T14 and T35) and two medium (T27 and T37) miR156-overexpressing ‘Alamo’ lines with the transgene under the control of the constitutive maize (Zea mays) ubiquitin 1 promoter, along with nontransgenic control plants, were grown in eastern Tennessee over two seasons. Results miR156 expression was positively associated with decreased and delayed flowering in switchgrass. Line T27 did not flower during the 2-year study. Line T37 did flower, but not all plants produced panicles. Flowering was delayed in T37, resulting in 70.6% fewer flowers than controls during the second field year with commensurate decreased seed yield: 1205 seeds per plant vs. 18,539 produced by each control. These results are notable given that line T37 produced equivalent vegetative aboveground biomass to the controls. miR156 transcript abundance of field-grown plants was congruent with greenhouse results. The five miR156 SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) target genes had suppressed expression in one or more of the transgenic lines. Line T27, which had the highest miR156 overexpression, showed significant downregulation for all five SPL genes. On the contrary, line T35 had the lowest miR156 overexpression and had no significant change in any of the five SPL genes. Conclusions Because of the research field’s geographical features, this study was the first instance of any genetically engineered trait in switchgrass, in which experimental plants were allowed to flower in the field in the eastern U.S.; USDA-APHIS-BRS regulators allowed open flowering. We found that medium overexpression of miR156, e.g., line T37, resulted in delayed and reduced flowering accompanied by high biomass production. We propose that induced miR156 expression could be further developed as a transgenic switchgrass bioconfinement tool to enable eventual commercialization
    corecore