19 research outputs found

    Immunomodulatory Effects of Streptococcus suis Capsule Type on Human Dendritic Cell Responses, Phagocytosis and Intracellular Survival

    Get PDF
    Streptococcus suis is a major porcine pathogen of significant commercial importance worldwide and an emerging zoonotic pathogen of humans. Given the important sentinel role of mucosal dendritic cells and their importance in induction of T cell responses we investigated the effect of different S. suis serotype strains and an isogenic capsule mutant of serotype 2 on the maturation, activation and expression of IL-10, IL-12p70 and TNF-α in human monocyte-derived dendritic cells. Additionally, we compared phagocytosis levels and bacterial survival after internalization. The capsule of serotype 2, the most common serotype associated with infection in humans and pigs, was highly anti-phagocytic and modulated the IL-10/IL-12 and IL-10/TNF-α cytokine production in favor of a more anti-inflammatory profile compared to other serotypes. This may have consequences for the induction of effective immunity to S. suis serotype 2 in humans. A shielding effect of the capsule on innate Toll-like receptor signaling was also demonstrated. Furthermore, we showed that 24 h after phagocytosis, significant numbers of viable intracellular S. suis were still present intracellularly. This may contribute to the dissemination of S. suis in the body

    Host–pathogen interactions in bacterial meningitis

    Get PDF

    North Atlantic forcing of Amazonian precipitation during the last ice age

    No full text
    The last glacial period was marked by multiple, abrupt reorganizations of ocean and atmosphere circulation. On thousand-year timescales, slowing of the Atlantic meridional overturning circulation was associated with cooling in the high northern latitudes, whereas strengthened circulation was linked to northern warming. In the tropics, these millennial-scale events were primarily reflected in altered patterns of precipitation. These hydrologic fluctuations induced ecological changes in the Atlantic seaboard and the high Andes, but less is known about the Amazon Basin. Here we reconstruct precipitation over Amazonian Ecuador over the past 94,000 years using a δ18O record from speleothems collected in Santiago Cave in western Amazonia. We interpret the variability of the δ18O record as changes in the source and amount of precipitation. With the exception of the period between 40,000 and 17,000 years ago, abrupt, high-frequency changes coincide with shifts in North Atlantic circulation, indicating a high-latitude influence on Amazonian precipitation over millennial timescales. On longer timescales, the record shows a relationship to precessional changes in the Earth’s orbit. In light of the lack of extreme aridity in our records, we conclude that ecosystems in western Amazonia have not experienced prolonged drying over the past 94,000 years
    corecore