10 research outputs found
Tight Regulation of the intS Gene of the KplE1 Prophage: A New Paradigm for Integrase Gene Regulation
Temperate phages have the ability to maintain their genome in their host, a process called lysogeny. For most, passive replication of the phage genome relies on integration into the host's chromosome and becoming a prophage. Prophages remain silent in the absence of stress and replicate passively within their host genome. However, when stressful conditions occur, a prophage excises itself and resumes the viral cycle. Integration and excision of phage genomes are mediated by regulated site-specific recombination catalyzed by tyrosine and serine recombinases. In the KplE1 prophage, site-specific recombination is mediated by the IntS integrase and the TorI recombination directionality factor (RDF). We previously described a sub-family of temperate phages that is characterized by an unusual organization of the recombination module. Consequently, the attL recombination region overlaps with the integrase promoter, and the integrase and RDF genes do not share a common activated promoter upon lytic induction as in the lambda prophage. In this study, we show that the intS gene is tightly regulated by its own product as well as by the TorI RDF protein. In silico analysis revealed that overlap of the attL region with the integrase promoter is widely encountered in prophages present in prokaryotic genomes, suggesting a general occurrence of negatively autoregulated integrase genes. The prediction that these integrase genes are negatively autoregulated was biologically assessed by studying the regulation of several integrase genes from two different Escherichia coli strains. Our results suggest that the majority of tRNA-associated integrase genes in prokaryotic genomes could be autoregulated and that this might be correlated with the recombination efficiency as in KplE1. The consequences of this unprecedented regulation for excisive recombination are discussed
Sterilization of hydrogen peroxide resistant bacterial spores with stabilized chlorine dioxide
Bacillus pumilus SAFR-032 spores isolated from a clean room environment are known to exhibit enhanced resistance to peroxide, desiccation, UV radiation and chemical disinfection than other spore-forming bacteria. The survival of B. pumilus SAFR-032 spores to standard clean room sterilization practices requires development of more stringent disinfection agents. Here, we report the effects of a stabilized chlorine dioxide-based biocidal agent against spores of B. pumilus SAFR-032 and Bacillus subtilis ATCC 6051. Viability was determined via CFU measurement after exposure. Chlorine dioxide demonstrated efficacy towards sterilization of spores of B. pumilus SAFR-032 equivalent or better than exposure to hydrogen peroxide. These results indicate efficacy of chlorine dioxide delivered through a stabilized chlorine dioxide product as a means of sterilization of peroxide- and UV-resistant spores.This work is supported by the National Institutes of Health (1R01GM090064-01), a NASA EPSCoR Research Infrastructure Development (RID) grant NN07AL49A, and the University of Oklahoma.Ye