47 research outputs found

    Arterial pressure changes monitoring with a new precordial noninvasive sensor

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recently, a cutaneous force-frequency relation recording system based on first heart sound amplitude vibrations has been validated. A further application is the assessment of Second Heart Sound (S2) amplitude variations at increasing heart rates. The aim of this study was to assess the relationship between second heart sound amplitude variations at increasing heart rates and hemodynamic changes.</p> <p>Methods</p> <p>The transcutaneous force sensor was positioned in the precordial region in 146 consecutive patients referred for exercise (n = 99), dipyridamole (n = 41), or pacing stress (n = 6). The curve of S2 peak amplitude variation as a function of heart rate was computed as the increment with respect to the resting value.</p> <p>Results</p> <p>A consistent S2 signal was obtained in all patients. Baseline S2 was 7.2 ± 3.3 m<it>g</it>, increasing to 12.7 ± 7.7 m<it>g </it>at peak stress. S2 percentage increase was + 133 ± 104% in the 99 exercise, + 2 ± 22% in the 41 dipyridamole, and + 31 ± 27% in the 6 pacing patients (p < 0.05). Significant determinants of S2 amplitude were blood pressure, heart rate, and cardiac index with best correlation (R = .57) for mean pressure.</p> <p>Conclusion</p> <p>S2 recording quantitatively documents systemic pressure changes.</p

    An Evaluation of Bucketing in Systems with Non-deterministic Timing Behavior

    No full text
    Part 4: Software Security / AttacksInternational audienceTiming side-channel vulnerabilities constitute a serious threat against privacy and confidentiality of data. In this article, we study the effects of bucketing, a previously proposed mitigation technique against timing side channels. We present two implementations of bucketing that reside at the application and at the kernel level, respectively. We experimentally evaluate the effectiveness of these implementations in a setting with non-deterministic timing behavior, a practically relevant setting that has not been studied before. Our results show that the impact of non-deterministic timing behavior is substantial. The bucket boundaries cannot be established sharply and this reduces the effectiveness of bucketing. Nevertheless, bucketing still provides a significant reduction of side-channel capacity

    An Evaluation of Bucketing in Systems with Non-Deterministic Timing Behavior

    No full text
    Part 4: Software Security / AttacksInternational audienceTiming side-channel vulnerabilities constitute a serious threat against privacy and confidentiality of data. In this article, we study the effects of bucketing, a previously proposed mitigation technique against timing side channels. We present two implementations of bucketing that reside at the application and at the kernel level, respectively. We experimentally evaluate the effectiveness of these implementations in a setting with non-deterministic timing behavior, a practically relevant setting that has not been studied before. Our results show that the impact of non-deterministic timing behavior is substantial. The bucket boundaries cannot be established sharply and this reduces the effectiveness of bucketing. Nevertheless, bucketing still provides a significant reduction of side-channel capacity

    Pharmacokinetic Modelling of Efavirenz, Atazanavir, Lamivudine and Tenofovir in the Female Genital Tract of HIV-Infected Pre-Menopausal Women

    No full text
    BACKGROUND AND OBJECTIVES: A previously published study of antiretroviral pharmacokinetics in the female genital tract of HIV-infected women demonstrated differing degrees of female genital tract penetration among antiretrovirals. These blood plasma (BP) and cervicovaginal fluid (CVF) data were co-modelled for four antiretrovirals with varying CVF exposures. METHODS: Six paired BP and CVF samples were collected over 24 h, and antiretroviral concentrations determined using validated liquid chromatography (LC) with UV detection or LC-mass spectrometry analytical methods. For each antiretroviral, a BP model was fit using Bayesian estimation (ADAPT5), followed by addition of a CVF model. The final model was chosen based on graphical and statistical output, and then non-linear mixed-effects modelling using S-ADAPT was performed. Population mean parameters and their variability are reported. Model-predicated area under the concentration-time curve during the dosing interval (AUC(Ď„)) and exposure ratios of CVF AUC(Ď„):BP AUC(Ď„) were calculated for each drug. RESULTS: The base model uses first-order absorption with a lag time, a two-compartment model, and a series of transit compartments that transfer the drug from BP to CVF. Protein-unbound drug transfers into CVF for efavirenz and atazanavir; total drug transfers for lamivudine and tenofovir. CVF follows a one-compartment model for efavirenz and atazanavir, and a two-compartment model for lamivudine and tenofovir. As expected, inter-individual variability was high. Model-predicted CVF AUC(Ď„):BP AUC(Ď„) ratios are consistent with published results. CONCLUSIONS: This is the first pharmacokinetic modelling of antiretroviral disposition in BP and CVF. These models will be further refined with tissue data, and used in clinical trials simulations to inform future studies of HIV pre-exposure prophylaxis in women
    corecore