15 research outputs found

    Risk of urinary bladder cancer: a case-control analysis of industry and occupation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Uncertainty remains about urinary bladder cancer (UBC) risk for many occupations. Here, we investigate the association between occupation, industry and UBC.</p> <p>Methods</p> <p>Lifetime occupational history was collected by in-person interview for 604 newly diagnosed UBC patients and 604 cancer-free controls. Each job title was assigned a two-digit industry code and a three-digit occupation code. Odds ratios (ORs) for UBC associated with ever being employed in an industry or occupation were calculated by unconditional logistic regression adjusting for age, gender and smoking status. We also examined UBC risk by duration of employment (>0 to <10, ≥10 years) in industry or occupation.</p> <p>Results</p> <p>Significantly increased risk of UBC was observed among waiters and bartenders (OR 2.87; 95% CI 1.05 to 7.72) and occupations related to medicine and health (OR 2.17; 95% CI 1.21 to 3.92), agricultural production, livestock and animal specialties (OR 1.90; 95% CI 1.03 to 3.49), electrical assembly, installation and repair (OR 1.69; 95% CI 1.07 to 2.65), communications (OR 1.74; 95% CI 1.00 to 3.01), and health services (OR 1.58; 95% CI 1.02 to 2.44). For these occupations we also observed a significant excess risk of UBC for long-term work (i.e. ≥10 years), with the exception of waiters and bartenders. Employment for 10 years or more was associated with increased risk of UBC in general farmers (OR 9.58; 95% CI 2.18 to 42.05), agricultural production of crops (OR 3.36; 95% CI 1.10 to 10.27), occupations related to bench working (OR 4.76; 95% CI 1.74 to 13.01), agricultural, fishery, forestry & related (OR 4.58; 95% CI 1.97 to 10.65), transportation equipment (OR 2.68; 95% CI 1.03 to 6.97), and structural work (OR 1.85; 95% CI 1.16 to 2.95).</p> <p>Conclusions</p> <p>This study provides evidence of increased risk of UBC for occupations that were previously reported as at-risk. Workers in several occupation and industry groups have a significantly higher risk of UBC, particularly when duration of employment is 10 years or more.</p

    Size, effective density, morphology, and nano-structure of soot particles generated from buoyant turbulent diffusion flames

    No full text
    With a global gas flaring volume of ∼140 billion cubic meters, flares are an important source of particulate emissions; however, very little is known about the physical and morphological properties of these particle emissions. To study these properties, a laboratory pipe flare producing a buoyant turbulent diffusion flame was used which allowed controlled experiments on flames up to ∼3 m tall. Three flare diameters (38.1, 50.8, and 76.2 mm) were used in this study with fuel exit velocities of 0.5, 0.9, and 1.5 m/s. ‘Light’ ‘medium’ and ‘heavy’ fuel compositions (consisting of C1 to C4 alkanes, carbon dioxide, and nitrogen in concentration representative of flares in the Alberta, Canada upstream oil and gas sector) were used, where heavier compositions refer to a greater concentration of higher order alkanes. Size distributions of soot particles were measured using a scanning mobility particle sizer. Mass-mobility relationship and effective density of particles were determined using a tandem arrangement of a differential mobility analyzer, a centrifugal particle mass analyzer and a condensation particle counter. Morphology and nano-structure of the particles were studied using transmission electron microscopy and Raman spectroscopy, respectively. Results showed that the particle median diameter and concentration increased as the fuel composition was changed from light to medium to heavy. On the other hand, particle morphology, measured by the relationships between particle mass vs. mobility (or effective density) and primary particle size vs. particle aggregate size, was independent of fuel composition, flow rate, or flare size and was in good agreement with previously reported values for that of soot particles from different internal combustion engines. Previously developed relations between effective density and primary particle size work well for the soot particles of this study. Raman spectroscopy indicated slightly lower D1/G ratios (more graphitic content) for the heavier fuels

    Morphology and size of soot from gas flares as a function of fuel and water addition

    No full text
    A large-scale, laboratory turbulent diffusion flame was used to study the effects of fuel composition on soot size and morphology. The burner and fuels are typical of those used in the upstream oil and gas industry for gas flaring, a practice commonly used to dispose of excess gaseous hydrocarbons. Fuels were characterized by their carbon-to-hydrogen ratio (from 0.264 to 0.369) and their volumetric higher heating value (HHVv) (from 35.8 to 75.2 MJ/m3). Transmission electron microscopy (TEM) was used to assess primary particle and aggregate size, showing that the scaling of primary particle size to aggregate size was roughly the same for all of the considered fuels (dp = 16.3(da,100 [nm]/100)0.35). However, fuels with higher HHVv produced substantially larger soot aggregates. A scanning mobility particle sizer (SMPS) was also used (i) to measure mobility diameter distributions and (ii) in tandem with a centrifugal particle mass analyzer (CPMA) to determine the two-dimensional mass-mobility and effective density-mobility distributions using a new inversion approach. The new approach was shown to improve internal consistency of inferred morphological parameters, though with a shift relative to median-based analysis of the tandem data. Raman spectroscopy was used to quantify the degree of graphitization in the soot nanostructure. The addition of water to the fuel consistently reduced the soot yields but did not affect other morphological parameters. Larger aggregates also tended to have larger primary particles and higher Raman D/G ratios suggesting larger graphitic domains

    Particulate emissions from turbulent diffusion flames with entrained droplets: A laboratory simulation of gas flaring emissions

    No full text
    Global flaring volume exceeds 140 billion m3 annually and flares are a key source of particulate air pollution. During flowback operations subsequent to fracturing of a well, droplets of flowback water—with varying levels of dissolved salts—can be entrained in the flared gas. Despite the widespread prevalence of fracturing, very little is known about the properties of particle emissions from such flares. To study these properties, we used a laboratory pipe flare producing a turbulent diffusion flame without and with entrained droplets. Entrained droplets of deionized water, sodium chloride solution, and solutions representing two typical flowback waters in Canada (Cardium and Duvernay) were used. Three different gas compositions (consisting of C1 to C7 alkanes, carbon dioxide, and nitrogen) representative of flares in the upstream oil and gas sector in Alberta, Canada were studied. The results showed that the salt in the entrained flowback droplets increased the particle concentration by about one order of magnitude by forming freshly nucleated salt particles. Moreover, soot concentration increased as a result of entrained salt. Effective density results showed that small particles (300 nm) were mostly soot—a result also confirmed by transmission electron microscopy (TEM). Electron micrographs showed that the majority of particles were either individual salt particles or internally-mixed soot-salt particles. The inorganic salt particles mainly consisted of Na and Cl, the two most abundant elements in flowback water. Raman spectroscopy indicated that the salt had much less (or no) impact on graphitic nanostructure of soot, while the fuel blend had a significant effect. The results of this study are significant as they reveal that current emission inventories based on flaring of gases only may underestimate soot emissions from flares with entrained droplets

    High Performers in Complex Spatial Systems: A Self-Organizing Mapping Approach with Reference to The Netherlands

    Get PDF
    This paper addresses the performance of creative firms from the perspective of complex spatial systems. Based on an extensive high-dimensional database on both the attributes of individual creative firms in the Netherlands and a series of detailed regional facilitating and driving factors related, inter alia, to talent, innovation, skills, networks, accessibility and hardware, a new methodology called self-organizing mapping is applied to identify and explain in virtual topological space, the relative differences between these firms and their business performance in various regions. It turns out that there are significant differences in the spatial and functional profile of large firms vis-à-vis SMEs across distinct geographical areas in the country. © 2011 The Author(s)
    corecore