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Abstract This paper addresses the performance of creative firms from the perspec-
tive of complex spatial systems. Based on an extensive high-dimensional database
on both the attributes of individual creative firms in the Netherlands and a series of
detailed regional facilitating and driving factors related, inter alia, to talent, innovation,
skills, networks, accessibility and hardware, a new methodology called self-organizing
mapping is applied to identify and explain in virtual topological space, the relative
differences between these firms and their business performance in various regions.
It turns out that there are significant differences in the spatial and functional profile of
large firms vis-à-vis SMEs across distinct geographical areas in the country.

JEL Classification M1 · M19 · M2 · M20 · M21 · Q5 · Q56 · R1 · R10 · R11 · R12 ·
R15 · R30

1 The complex space-economy

The space-economy—with its myriad of actors, regions and interwoven networks—
exhibits a dynamic constellation that is both volatile and resilient. It comprises
complex feedback systems that may break or reinforce spatial equilibrium forces

K. Kourtit (B) · P. Nijkamp
Department of Spatial Economics, Free University, 1081 HV Amsterdam, The Netherlands
e-mail: k.kourtit@vu.nl

P. Nijkamp
e-mail: p.nijkamp@vu.nl

D. Arribas-Bel
GeoDa Center for Geospatial Analysis and Computation,
Arizona State University, Tempe, AZ 85287-5302, USA
e-mail: darribas@asu.edu

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81889972?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


502 K. Kourtit et al.

(Reggiani and Nijkamp 2009). The new innovation theory (Acs et al. 2002) has clearly
demonstrated that innovative and creative firms1 are key actors in the economic change
and transformation process of cities and regions. The interface between the business
performance of individual firms and the socio-economic development of cities and
regions calls for a thorough analysis of complex spatial systems, with due attention
to the dynamic drivers of, and effects on, balanced regional development (van Geen-
huizen 2007; Kourtit et al. 2011a).

Innovativeness and creativeness have become pivotal concepts in the modern
regional development literature. Regions and firms appear to form a complex spa-
tial-economic architecture that may be subjected to dynamic evolution and resilience.
But which firms are responsible for the rapid spatial dynamics? And which firms are
key actors in regional innovation systems? In the present study, we adopt the prop-
osition that it is the best-performing firms that generate a maximum contribution to
regional development. But at the same time, a reverse causality has to be taken into
consideration, since regional moderator variables can also act as attraction forces for
successful or high-performing firms.

The present paper investigates on an empirical basis whether localized concentra-
tions of economic activity will yield the advantages and/or disadvantages, as predicted
by the literature, for creative—often high-tech—business activities and/or firms, with
an empirical focus on regions in the Netherlands. We will address in particular the spa-
tial context in researching the determinants of economic development. Our research
tends to highlight the crucial importance of geographic location and industrial prox-
imity for business performance of—mainly—high-tech firms2 in the creative sector.

The overarching analysis framework of this paper is based on a concept from
the industrial organization and business management literature, viz. Strategic Perfor-
mance Management (SPM), extended with relevant spatial concentration and prox-
imity dimensions. In this respect, SPM is defined as ‘the process where steering of
the organization takes place through the systematic definition of mission, strategy
and objectives of the organization, making these measurable through critical success
factors and key performance indicators, in order to be able to take corrective actions
to keep the organization on track’ (de Waal 2007). The effectiveness of the process is
defined as the achievement of financial as well as non-financial targets, the develop-
ment of skills and competencies, and the improvement of customer care and process
quality and innovation (de Waal 2007).

It is often argued that SPM may improve the firms’ competitive advantages by
anticipating the rapidly changing circumstances within the industry and may help to
manage these changes, so as to overcome their growth constraints in order for them
to effectively compete on local or global markets; to directly respond to the needs of
customers and to provide new opportunities for utilizing innovations in their products

1 Creative firms normally belong to the innovative part of the industrial sector and tend to be rather com-
petitive through their resilience and flexibility.
2 These firms operate in an extremely volatile, dynamic and uncertain business climate with continually
changing technologies, markets, business strategies, and shifting consumer needs for products and ser-
vices (fundamental transformation). They are engaged in development, manufacturing and distribution of
high-tech products, technology transfer and consultation.
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and business processes. Consequently, our research adopts a localized concentration
perspective on the determinants of business performance, and it ties in with the modern
regional entrepreneurship literature.

The aim of our study is to associate well-defined SPM initiatives of individual
firms in the creative sector—in particular, high-tech firms—with a broad array of
regional background (both facilitating and driving) variables. This is a rather novel
approach in the regional-economic and industrial business literature. Methodologi-
cally, we employ a recently development analysis technique in the complex systems
literature, viz. self-organizing maps (SOMs), which belongs to the family of compu-
tational neural network analyses. This SOM approach will be utilized to explore the
interface between business performance and regional moderator variables.

This study is organized as follows. Section 2 offers a brief presentation of some
highlights from the literature on the creative industry-regions nexus, with a special—
though not exclusive—interest in the economic significance of the high-tech sector.
In Sect. 3, the principles of the multivariate learning tool for analyzing complex sys-
tems and networks in our study, namely SOMs, are briefly described. Next, Sect. 4
is devoted to a description of the merger of data sets for our empirical analysis, by
combining micro-based data on creative—mainly high-tech firms—in the Netherlands
with a wealth of regional background variables. Section 5 focusses then on an in-depth
presentation and interpretation of the empirical results, which also includes an inte-
gration of two mapping applications—one on regional growth drivers and another one
on creative business firms—is presented. The results of some robustness checks are
also described. The paper concludes with some retrospective and prospective remarks.

2 Innovative firms as complex carriers of a creative economy

The pivotal role of high-tech firms in creativity and innovation has been widely
acknowledged and documented in the economic and entrepreneurship literature (see,
e.g., Pavitt 1990; Berry and Taggart 1996; Capello 2002; Felsenstein 2002; Moreno
et al. 2005; Alecke et al. 2006; Oakey 2007; Cooper and Park 2008). Such firms repre-
sent a powerful medium for inducing and encouraging the creation of new businesses
and jobs and are a promising source of wealth for society, and form an important
element of a vital urban or regional economy (see e.g., Florida 2002, 2004; Lee et al.
2004; McGranahan and Timothy 2007).

Several regions and cities—such as Paris, Berlin, Vienna, Dubai, London, Prague,
Amsterdam, Sydney, Manchester, Glasgow, Rome, Milan, Melbourne, Toronto,
Tokyo, Madrid, Barcelona, Lisbon, Dublin, New York, Austin, and Newcastle—with
a highly concentrated creative production system, an original entrepreneurial spirit,
a flexible institutional system, and modern lifestyles and consumption levels have
undergone significant structural changes in recent years. Such creative or smart areas
normally have a strong knowledge and innovation base (Kourtit et al. 2011b).

In today’s open world driven by global competiveness, many regions and cities
are forced to turn into multifaceted business and residential concentrations—with
an unprecedented innovative, creative, and cultural diversity—which are competi-
tive assets to improve the socio-economic performance of these areas, and to shape
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a spectacular new and diverse urban design and lifestyle for accelerated economic
growth (Jones-Evans and Klofsten 1997; Bommer and Jalajas 2002). They are chal-
lenged to form a ‘Creative Geographic Space’ by novel governance models, and to
develop new ideas to implement an effective strategy for public interventions at the
local level by encouraging the development of creative industries and consequent eco-
nomic growth (Kourtit et al. 2011c). The role of creativeness in geography can be
traced back to earlier writings of Tornqvist (1983) and Andersson (1985) in the 1980s,
but in recent years has been revisited in the work of Landry (2000) and Florida (2002).
This new paradigm has prompted a certain hype around the concept of a creative, open
and globalizing world with social, cultural, and creative urban environmental factors
and mechanisms that are diverse and dynamic (Florida 2003; Forte et al. 2006; Peck
2005; Matheson 2006; Olfert and Partridge 2011). Creative and innovative attitudes
and opportunities—for instance, by being open and communicative—are considered
to be a sine qua non for a flexible response to the increased global and challenging
business world, that is able to meet the need for immediate adaptation to dynamic or
volatile market changes.

The spatial-temporal complexity leads to a new ‘spatial imperative’: modern
regions and cities must attract, retain, and even nurture, highly mobile and (global)
creative and innovative firms and talents (the ‘pluriformity’ approach), as their aggre-
gate efforts become the primary drivers that will deeply affect the ground rules for
securing economic development and the competitive advantage of modern regions and
cities and their networks (Glaeser 2004; Muñiz et al. 2010; Nijkamp 2008; Peck 2005;
Shea 2004; Sonis and Hewings 1998). To manage their regional or urban economies
and strengthen their international position, many regions and cities have to compete
in fiercely contested arenas for ‘creatives’—individuals, firms, and organizations—
as a new increasingly pervasive (business) development policy strategy in order to
attract or generate highly specialized creative and knowledge sectors (see Bayliss
2007). These observations inform competent stakeholders how to operate within the
new creativity paradigm in favor of creative firms and talents, both domestically and
internationally (Bruinsma et al. 2009), and highlight the conditions for success in the
creative economy. It goes without saying that employment opportunities, and enter-
prises in particular, may play a central role in creating a new urban or regional vitality
(Bellini et al. 2008; Lee et al. 2004; Nijkamp 2009). Clearly, with the increasing inter-
est in high-tech firms, the need to properly understand the nature of their location
behavior and decisions has become of paramount importance across a wide range of
stakeholders.

Regional governments, decision-making bodies at local levels, and leading firms
in the area concerned are thus changing their existing economic and productive posi-
tions (Porter 1990; van den Berg 2001) by providing the most promising and profitable
business environment (Porter 2002). They may ensure an efficient design and use of
smart spatial amenities, such as local infrastructure, urban quality of life in the region
concerned, and availability of various capital resources (e.g., qualified labor) used in
the production of innovative products and/or services. A key factor is that both infor-
mal and formal knowledge spillovers among all actors and stakeholders occur in these
regions and cities (Jacobs 1969; Duranton and Puga 2003), thus creating sustainable
economic development and growth (Porter 2002).
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The observations made above prompt the question concerning the relationship
between the spatial dimension (geographic attributes) and regional factors, on the one
hand, and business performance by individual entrepreneurs on the other. In recent
years, we have also witnessed a reorientation of the research and policy interest of inter-
national institutions (e.g., the World Bank) toward the interaction between business
activities and localization. Although there is a common agreement on the interde-
pendence between local and regional environmental factors and the business perfor-
mance of firms and their economic activity (e.g., formation, survival, functioning,
and growth), many studies that pay attention to this issue are based mainly on anec-
dotal evidence and offer mainly case study observations or in-depth interviews with a
few key-players. In various cases, however, they come up with mutually contrasting
conclusions, while solid empirical quantitative research leading to generalization is
scarce. Consequently, many research questions still remain a puzzle, both theoreti-
cally and empirically. This suggests that more solid research on this topic is definitely
needed in order to better understand the interplay between the firm’s performance and
its geographic environment. Our research provides offer a framework for addressing
the mutual interplay between the business performance of creative, high-tech firms
in the Netherlands and geographical amenities at local and regional scales that are a
moderator factor for economic development.

Our study uses a GIS approach with respect to various individual and spatial attri-
butes, in combination with multivariate statistical tools. These tools are deployed in
order to highlight the results of a SOM analysis that is applied to a multi-dimensional
data set in order to compare the performance of the firms under consideration (240
respondents; 60 firms in total). This complex systems approach allows us to assess
systematically the regional patterns of spatial activities, and to integrate and provide
relevant information with a geographic component in order to enhance our insight
into critical business and planning decisions for both localization and business per-
formance. Section 3 will be devoted to a brief introduction to, and exposition on,
SOMs.

3 The self-organizing map approach

The Self-Organizing Map or SOM3 (Kohonen 2001) is an algorithmic approach that
is associated with the family of unsupervised computational neural networks (for a
general overview of neutral networks, see Fischer 2001). It is essentially a special
type of neural network, as it is based on a set of nodes or neurons that are connected
to each other through topological relationships, while it is unsupervised because the
observations are not previously labeled as pertaining to one or another category, but
rather such a categorization is unknown. It was originally developed in the 1980s with

3 The term “self-organizing” in this context should not be confused with other ‘self-organizing’ concepts in
the literature (see, e.g., Krugman 1996; Kumar et al. 2007; Lung 1988). In an economic context, this concept
refers to interactive behavior of economic agents and their effects on the mechanism of the economy, while
in our case, self-organization refers to the learning process that the algorithm employs to make it possible
for observations to locate near to similar ones and distantly from more different ones in the output space.

123



506 K. Kourtit et al.

the purpose of explaining the complex organization of the brains functions (see for an
overview Kohonen and Honkela 2007; Arribas-Bel et al. 2011); the primary objective
was to reduce large and high-dimensional data sets, in terms of both the number of
dimensions (projection) and the amount of initial observations (quantization), while
maintaining the relevant information and presenting it in an understandable way for
the human brain in order to uncover hidden patterns. Although its popularity has
increased greatly over the years, and it has been used in many fields beyond those for
which it was originally conceived, it has only been recently that the social sciences
have become aware of its research potential. Certainly, the increasing availability of
larger and more complex data sets describing socio-economic phenomena is bring-
ing to the social sciences what (Skupin and Agarwal 2007) call ‘truly n-dimensional’
data. It is also making increasingly explicit the need for different tools that comple-
ment traditional statistical tools and that help to fully exploit the potential of such new
data bases. It is in this context that the term ‘data mining’ fits, and where the SOM,
as one of the components of this new toolkit, gains the power to shed new light on,
and uncover, interesting patterns in complex relations. Recent attempts to explore this
methodology in the social sciences include studies by Skupin and Hagelman (2005)
and Spielman and Thill (2008) in socio-demographics; Yan and Thill (2009) in airline
flows; Arribas-Bel et al. (2011) on urban sprawl in Europe; Kourtit et al. (2011b) on
smart cities. Agarwal and Skupin (2007) offer a collection of interesting applications
in the field of GIScience.

The output of a SOM is a network of neurons that are interconnected by topological
relationships and that are usually represented by hexagons, implying therefore that the
normal neuron (i.e., not on the edge) will have six neighbors and will thus be connected
to six other neurons. Because of the particular characteristics of the algorithm, this
space that is created preserves the statistical properties of the original sample, although
it contains only two dimensions, as opposed to the (usually larger) original dimension-
ality. The SOM thus creates a statistical space onto which the original observations
may be mapped, thus making topological what in origin was statistical. It is important
to stress the fact that the output of the SOM is a separate space that contains the sta-
tistical properties of the original observations and that allows them to be mapped onto
its surface, but that is not composed by them. In this context, dissimilarity between
observations is translated into distance within a SOM: similar observations will tend to
be close to each other, whereas distinct ones will be more distant. Although the SOM
has been compared with other statistical techniques, such as principal components and
factor analysis, or clustering algorithms, such as k-means or hierarchical clustering,
according to Yan and Thill (2009) there are clear advantages inherent in this approach:
the learning nature of the algorithm that avoids no recovery, continuing to compare and
use information from every observation even after they are first assigned to a neuron;
the use of the distance of each input from all neurons as opposed to only the nearest
one; the fact that the SOM is a combination of both data quantization and data pro-
jection; and the visualization opportunities that it offers. Among all of these, the latter
one has greater implications for the present paper, since it is the ability to represent
in a visual and intuitive way the underlying statistical properties of high-dimensional
data sets that makes the SOM a suitable tool to unfold complexity into understandable
patterns that enhance understanding.
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Although the underpinnings and computational challenges involved are quite tricky,
the general intuition of the SOM algorithm is rather simple.4 We begin by defining the
topology we will work with, that is, the number of neurons, as well as the neighbor-
hood relationships (typically hexagonal) and their arrangement (squared, rectangular).
Once the original set-up is ready, each neuron needs to be assigned a vector of as many
dimensions as the original data set; initially, the values could be random, as the proper-
ties of the sample are entirely transferred through the algorithmic process. The training
phase then starts by presenting the observations to the network in a sequential fashion;
for each of them, we try to find the best matching unit (BMU), that is, the neuron for
which the distance (usually, Euclidean) is minimized. At this point, both the BMU
and its neighbors are modified to become closer, although the extent of the modifica-
tion depends on the distance of each neuron to the BMU: the latter gets a significant
‘update’ of its values, while neurons further away get smaller ones. It is important to
stress that the BMU should be partially, not completely, modified to match the obser-
vations. This, combined with the repetition of the steps many times (in the order of
hundreds of thousands), is at the heart of the self-organizing and the learning nature
of the algorithm. In order to facilitate the convergence of results, the number of neigh-
bors (defined by a neighborhood function) and the extent of adjustment (learning rate)
decrease over the training phase, so that at the end of the process very few neurons
beyond the actual BMU are slightly modified. As mentioned above, this is repeated a
large amount of times, yielding at the end a trained network, one in which the values
of the nodes are no longer random, but reflect the statistical properties of the original
data set used.

A trained network may be used for in-depth analysis of, for instance, underlying
patterns. Although there are several ways to extract information and interact with a
SOM, two of the main ones are used in this paper. The first consists of simply map-
ping the original observations onto the statistical space created. In the same way as
during training, we can link the input data with the output space by assigning them
to their BMUs. This locates the original observations in different areas, or regions,
of the SOM, according to their characteristics, thus creating a statistical topology
that quickly allows a visualization of more abstract relationships and might reveal
interesting patterns in the data.

A further enhancement of this technique that we also make use of in this paper
consists of mapping an ‘external’ variable onto the SOM. In this case, the BMUs are
not only represented, but also an additional dimension is introduced by using differ-
ent colors or some other symbology based on a variable not used for training. This
allows us to observe trends in the association between the variable and those variables
used to feed the algorithm, not only in a global way (as in correlation coefficients, for
example), but in a more fine-grained manner, which also uncovers individual patterns.
Another way to analyze a SOM relates to what are called component planes. This
approach is a visualization of the trained network rather than a link to the original
observations. It basically consists of mapping in a sort of choropleth the values of one
of the dimensions of the neurons to see where high and low values are located, and

4 This article only presents the general idea of the basic version of the SOM algorithm; for a complete and
rigorous treatment, the reader is referred to Kohonen (2001).
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thus be able to characterize different regions within the SOM. One can do that for
each of the variables used in the training, thereby getting a better insight into what
different regions mean, and what are the underlying characteristics. When combined
with the BMUs, this allows a characterization of the observations through their spatial
location within the SOM. In Sect. 5, we present some interesting SOM results from an
application to the Netherlands, after a concise description of our database in Sect. 4.

4 Description of high-dimensional data sets on firms and regions

This section describes the details of our database and the multivariate methodology
employed. Our study combines data from different sources to represent a micro-
business perspective on the determinants of the firms’ performance and their links
with regional entrepreneurship and socio-economic moderator variables at a detailed
spatial level. The data were partly provided by, among other, Statistics Netherlands
(CBS), and partly obtained from detailed interviews with representatives of Dutch
firms (from which both location and performance factors were collected).

Our empirical approach is based on original micro- and macro-scale data. At the
macro-level, we rely on very detailed and extensive regional and location-specific
data at a municipal and regional level which can mainly be aggregated to a NUTS-3
level (so-called COROP regions in the Netherlands) and later on to a provincial level.
Clearly, the regional perspective (a source of differentiation for business firms) is criti-
cal to assess how and to what extent strategic business objectives included in SPM and
value creation by a firm are actually achieved in the entire value chain of the local busi-
ness network in which they operate. Otherwise, a firm might end up working with only
one part of the value chain, while the total value might actually accrue to other firms
really taking all the benefits. In the complex force field of business strategies and indi-
vidual driving forces that together make up the critical success factors (CSFs) of a firm,
it is important to stress that the performance of a firm is not only determined by its own
decisions, but also by its local business environment. Therefore, it is necessary to zoom
in on the regional or local level, where all economic activities come together, and where
all things are happening that lead to effective socio-economic action and achievement.

Many spatial moderator data in our research appeared to be available on a consistent
basis for 40 Dutch NUTS-3 regions and 467 municipalities for the year 2008. The data
set contains geographic concentrations of the relevant variables, which comprise inter
alia innovative socio-economic activities, business operations, and environmental and
contextual factors at the regional or local level. All these data are associated with the
spatial-economic and social environment (for a general exposition on these concepts,
see also Glaeser 2004; Shea 2004). The total data set comprises 410 distinct vari-
ables or indicators at a regional or local scale (see also Appendix A). Unfortunately,
some variables were only available at the provincial level in the Netherlands (in total,
there are 12 provinces), so that we were forced consistently to aggregate all data from
municipal and COROP levels to the provincial level, by using GIS interface methods.
A provincial map of the Netherlands is given in Fig. 1.

As well as having a wealth of multifaceted data at a regional scale, we were also able
to obtain detailed micro-based information on a multiplicity of characteristics—in line

123



High performers in complex spatial systems 509

12 provinces of the Netherlands:

1. Groningen 
2. Friesland 
3. Drenthe 
4. Overijssel 
5. Gelderland 
6. Flevoland 
7. Utrecht 
8. Noord-Holland 
9. Zuid-Holland 
10. Zeeland 
11. Noord-Brabant 
12. Limburg 

Fig. 1 Map of the 12 provinces of the Netherlands. Source: http://www.digital-dreams.nl/realdutch/
images/provincies.gif

with the SPM methodology—of 60 firms (19 large firms and 41 SMEs) in the creative
sector (in particular, in the high-tech sector) in the Netherlands, in which SPM played
a role. These data were obtained by administering extensive face-to-face interviews
with an average of 4 key managers per firm.

These individual firm data are related to both output and input performance charac-
teristics, as well as to motivational and driving forces that are decisive for turning the
firm into a high-performance firm, a so-called high performer or exceptional cham-
pion. In order to trace the opportunities and barriers of the business performance
among these firms in the Netherlands, we had to organize an in-depth field survey in
our search for such exceptional firms with a peak performance.

As a prior broad literature search did not create a solid basis for a satisfactory
and validated questionnaire to obtain verified and systematically structured informa-
tion from the firms on their critical performance success conditions and indicators
that reflect innovations in a competitive economic system driven by profit motives, a
self-composed ‘statement questionnaire’ was used. The participating companies, all
from the private sector, were selected on the basis of two dominant criteria: namely
whether they operate in the creative industries,5 and had implemented and used SPM
measurement systems.6 The use of SPM measurement systems helps us in further
discriminate between low and high performing organizations (see previous works of
de Waal et al. 2009; Kourtit and de Waal 2009; Kourtit et al. 2011a). The performance
statements in the questionnaire were next identified from the broad literature available

5 Creative industries in our study refer to a range of economic activities in sectors such as advertising,
architecture, arts, tourism services, design, fashion, film, R&D, high-tech, games, and media.
6 The selection mechanism of these firms was partly based on the information from Dutch industrial branch
organizations on the management profile of specific firms and partly on previous expert contacts established
with them, so that easy access was facilitated. Consequently, a reasonable degree of representativeness may
be expected.
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(indicators were converted into statements and presented to the interviewees) and were
then re-formulated so that the interviewees had to give a rating on a 5-point Likert
scale, varying from ‘1 = not at all’ (i.e., ‘we did not experience the SPM advantage’
at all) to ‘5 = very strong’ (i.e., ‘we experienced the SPM advantage very strongly).
The interviewees were also asked whether they had experienced any measurable dis-
advantages from the implementation and use of the SPM measurement system in their
organization7 (for details, see also Kourtit and Nijkamp 2011).

The questionnaire was first tested at the company level, after which some adjust-
ments were made in the formulation of several questions. In total, 240 representative
people (organizational staff members, key functionaries) of 60 creative business firms
(19 large firms and 41 SMEs) were interviewed. After the interviews, the interview
reports were sent to the interviewees for confirmation of their responses. After the
interviewees had approved the interview reports, the answers given were averaged for
each company so as to get a representative robust picture for each firm.

The precise geographical coordinates of these firms were, of course, known. And
therefore, it was possible to assign the location of each individual firm unambigu-
ously to the regional level employed in our study. Next, spatial GIS-oriented statisti-
cal analysis was applied to integrate separate and disaggregated original micro- and
macro-scale data formats to give visibility (to uncover a variety of information) and
to identify geographically discriminating factors in the firms’ performance.

In order to (i) avoid the collection and use of an overwhelming amount of unstruc-
tured spatial data (which initially yielded a wealth of information on 410 variables in
467 municipalities and/or 40 regions), (ii) get a better insight into the critical success
factors for the business performance of the 60 Dutch firms concerned, and (iii) obtain
an informed idea about the most crucial characteristics and achievements of the dif-
ferent regions and about the firms’ performance in our subsequent statistical analysis,
the long list of variables was systematized and summarized by means of a clustered
presentation in eight groups (see Fig. 2), which contains all available variables. These
groups are as follows: Creative Capital (CC), Human Capital (HC), Economic Capital
(EC), Knowledge Capital (KC), Social Capital (SC), Cultural Capital (CLC), Con-
nectivity & Infrastructure Capital (CFC), and Technological Capital (TC). Similarly,
the SPM data of the individual firms were also clustered according to three main char-
acteristic groups, viz. High Result Orientation (HRO), High Quality Business (HQB),
and Better Understanding Strategy (BUS). In this way, it was also possible to use at a
later stage a systematic data reduction method based on Principal Component Analysis
(PCA). We are now able to offer a compact, systematic picture of the general micro-
and macro-scale data, as depicted in Fig. 2. We refer to Appendix A for more details.

This conceptual information framework was used in our SOM analysis in order to
extract significant and systematic patterns in firm performance and spatial drivers, so
as to understand better the linkages between geographic business environments and

7 To increase internal and external validity, the questionnaire employed also offered the opportunity to fill
in other alternative and extraneous (dis-) advantages the interviewees had experienced, from the implemen-
tation and use of the SPM measurement system in their organization compared to previous years without
the implementation of SPM. No prior selection of (sub-)sectors was made in order to allow for more
generalization of the research results.

123



High performers in complex spatial systems 511

Fig. 2 Structure of the systematic database for Dutch regions and firms

the firms’ strategic options and performances—and also to assess location decisions
in line with their business strategy—at both the geographical level and the level of
firms. By using this approach, we are able to identify systematic patterns from the
large amount of data on the many variables available, and to gain insight into how
firms relate to each other in a high-dimensional data context, for example, by judging
whether the best geographic location of a firm is uniquely dependent on its own busi-
ness strategy (including SPM). The methodology used is based on the SOM approach
described above; its results are presented in Sect. 5 next.

5 SOM results on firm performance and regional drivers in the Netherlands

5.1 Location factors and spatial distribution of firms

As a first step in our exploration of spatial patterns of creative Dutch firms, we relate
geographical firm location to regional factors. The main interest is first to explore how
firms located in different regions relate to each other, based on the characteristics of
such regions. We approach this question from a SOM perspective, which creates a sta-
tistical space in which the provinces of the Netherlands (and subsequently, firms) are
mapped according to their regional characteristics, rather than to their geographical
coordinates.

Figure 3 represents the two main spaces coming together in the SOM analysis: on
the left-hand side (a) of Fig. 3 we have a geographical map8 of the Dutch provinces,
while on the right-hand side (b) we have a topological virtual map obtained from a
SOM network trained by using all the regional factors explained in Sect. 4. In the latter
map, unlike its left counter-part, the position of the elements is not based on physical

8 For statistical reasons, i.e. absence of firm data on Friesland and Flevoland, these two provinces are left
out of consideration in Fig. 3a and subsequent maps.
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Fig. 3 Firm distribution across geographical and statistical space

geography but on statistical associations. Thus, distance in Fig. 3b implies dissimi-
larity: the more distant two observation points are, the more different characteristics
they have, and vice versa. Following this reasoning, we can now make comparisons
between the geographical and the statistical maps of the Netherlands, and see how,
for instance,—despite the physical distance between the provinces of Zeeland and
Drenthe—their characteristics are very similar, which makes them statistical neigh-
bors. We can also observe how, in other cases, geography is a good representation
of statistical characteristics: Noord (North)-Holland and Zuid (South)-Holland are
neighbors, both in the real world and in a SOM sense; a similar situation applies to
Noord (North)-Brabant, Utrecht and Gelderland.

Since in this stage, the SOM has been trained using the regional characteristics, it
allows a direct mapping of the provinces through their best matching units (BMUs),
as explained in Sect. 3. Moreover, since we know where each firm is located, we can
proceed and link the set of firms to each province neuron, obtaining, by extension,
the position of each firm within the new statistical space created. As such, Fig. 3b
also offers a first visualization of the firms under consideration. Larger dots repre-
sent large firms in the data set, while smaller dots stand for small (SME) firms.9 As
can easily be grasped from the figure, the distribution is fairly unequal, both between
large and small firms as well as location-wise: while regions such as Groningen only
have one (small) firm, others like Noord-Brabant have four large ones and 12 of a
small size. The performance itself of all firms concerned is now further investigated in
Sect. 5.2

9 All the figures in the paper are available in color in the digital version, to be found online.
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Fig. 4 Distribution of firms’ size and characteristics across the SOM

5.2 Analysis of firm performance

Notwithstanding the interesting patterns that arise from comparing the geographical
and statistical distribution of provinces and firms, the main interest of our analysis is in
the study of firm performance based on the SPM principle. In this context, we interpret
this concept in a high-dimensional manner, understanding that the performance of a
firm is composed of many factors, and thus that there is not only one form of high
(or low) performance, but different kinds of performance. It is important to clearly
highlight this framework, as this is quite different from the one typically used in the
literature in which, in order to deal with a high-dimensional concept, an index or score
variable is defined, which collapses all the variables that capture every aspect into a
composite indicator that is further used in the analysis. Although the latter approach
maybe useful, in the present case, we aim to focus on, and to make explicit, the com-
plexity inherent in the nature of the firms’ performance with a spatial distribution,
and to look at systematic patterns that may emerge within such a complexity, which
would otherwise probably not have been noticed had we used a composite measure.
Nevertheless, we will return to the idea of summarizing performance in one score
variable at the end of this section (Sects. 5.4 and 5.5), where we try to build a bridge
between both perspectives.

The main tool we use to accomplish our purpose is the SOM network whose results
are displayed in Fig. 4. Since the rest of the section revolves around this device, it
is important to gain an adequate understanding of its composition. The network is
trained using the performance data at the firm level presented earlier in Sect. 4. We
can interpret this as a spatial representation of the firm performance: in other words,
as a map of the statistical characteristics of the data set employed. Onto this map,
it is possible to locate each of the input the firms used in our analysis, according to

123



514 K. Kourtit et al.

their values for each variable considered. The figure displays the position of the firms,
where one group of firms may be very similar in terms of performance, while others
are as different as the sample gets.

An interesting question to ask now is whether there is any systematic pattern across
the configuration of firms within the statistical map displayed in Fig. 4. In other words,
we want to explore whether, besides having similar profiles of performance, firms
located near to each other share similar characteristics with regard to other values. It
should be noted that Fig. 4 also displays an additional layer of information by using
different colors to mark the location of each firm. The resulting pattern appears to be
striking in that it almost implies a perfect split of the SOM into two regions: one popu-
lated by large firms in the middle and lower left part; and the other filled with small ones
across the rest of the map. This indicates that, since they are located in the same region
of the SOM, large firms tend to have similar profiles of performance, while the same
is true for small firms. This result suggests a substantial influence of the variable firm
size (i.e., large and small) on the various criteria of business performance in an SPM
context.

5.3 Analysis of location and urbanization

Besides firm size (large vs. SMEs), we now also consider two other geographically
oriented variables of the firms concerned in order to analyze how they relate to perfor-
mance: their geographical location in the Netherlands and the level of urbanization in
the area where they are located. In the first case, we are trying to answer the question
whether firms geographically located in the same province are mapped onto the same
topological area of the SOM and thus have a similar performance; in the second case,
we look for co-location patterns of firms established in places with similar degrees of
urbanization. The technique we use is very similar to the one used for firm size: each
category is assigned a color and firms are colored based on the category to which they
belong in the variable of analysis. The maps in Fig. 5 display: (a) the distribution of
the different provinces and (b) the level of urbanization across the firm’ performance
space of the SOM.

In both cases, the patterns are not nearly as clear as for firm size. Part of this relates
to the fact that for both variables there are more categories (multiple provinces and
various urbanization levels, respectively) than in the case of firm size (only two, big
and small), which makes it harder from a cognitive perspective to visually detect pat-
terns, even if they were to exist. To work around this difficulty, it would be desirable to
switch from purely visual techniques to more analytical measures that summarize in
quantitative numbers the spatial patterns of the SOM. To cope with this issue, Spielman
and Thill (2008) have proposed a simple measure (Disp) to calculate the dispersion of
observations from one category across the SOM. The intuitive idea is to compare the
average distance between the elements of the category to the global average distance
between all observations of the SOM. In analytical terms this means:

Disp = d̄subset

d̄global
, (1)

123



High performers in complex spatial systems 515

Fig. 5 Distribution of spatial variables across a performance-based SOM. a Colors associated with the
following regions, in order of appearance in the legend: Zuid-Holland, Overjissel, Limburg, Noord-Holland,
Utrecht, Noord-Brabant, Gelderland, Zeeland, Drenthe and Groningen. b Degrees of urbanization: not
urbanized (lighest green), weak urbanized, little urbanized, strong urbanized, very strong urbanized (darkest
brown) (color figure online)

where di j−subset = 1
Nsubset

∑
isubset

∑
jsubset

di j ; di j is the distance between observation
i and j; and dglobal represents the version of dsubset considering all the observations
of the SOM. When Disp = 1, the average distance between the elements (firms in
this case) of the category concerned equals that of the global distance; however, when
the index is smaller (greater) than 1, the observations in the subset of choice are, on
average, closer (further) to each other, implying some degree of relative concentration
(dispersion).

We will now use this measure to find out whether firms in the same province or
with the same level of urbanization tend to be closer to each other, which would sug-
gest that such variables are associated with particular types of performance. Tables 1
and 2 display the indices for each subset in both variables i.e. the provincial, and the
urbanization level, marking with an asterisk those cases where the measure is below 1,
implying some degree of concentration. The measures are calculated for the complete
set of firms (large and SMEs) as well as for the SMEs and the large ones separately.
When all firms are considered, in the case of the provinces—although many score
below 1—the difference is minor, except for Gelderland and Overrijsel; the numbers
for urbanization do not differ very much, with only one category showing a value
below 1, but again above 0.9. When we subdivide our set of firms by size, some
more interesting patterns arise. Particularly, large firms from Limburg (0.63) and Utr-
echt (0.49) display a clear concentration in the SOM; also, the degree of urbanization
among large firms is clearly ordered across the SOM, since all of them show indi-
ces clearly below 1 (0.66, 0.81, and 0.53). Although small firms show less distinct
patterns, those in both weakly and very strongly urbanized areas also tend to locate in
the same virtual topological region of the SOM. The main conclusion we may draw
from this analysis is that, although in a global aggregate case we do not see clear
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Table 1 Dispersion measures for location

Firms located in Total Large SMEs

Score Nr. firms Score Nr. firms Score Nr. firms

Groningen – 1 – – 0.000000* 1

Zeeland 0.7203* 5 – – 0.000000* 1

Noord-Brabant 0.9637* 16 0.848567* 4 0.939080* 12

Noord-Holland 0.9903* 10 0.703364* 5 1.159810 5

Zuid-Holland 1.0625 4 0.000000* 1 1.308831 3

Drenthe – 1 – – 0.000000* 1

Overijssel 0.3658* 2 0.000000* 1 0.000000* 1

Limburg 0.9444* 6 0.633554* 2 0.734547* 4

Utrecht 1.0654 14 0.485365* 6 1.249930 8

Gelderland – 1 – – 0.978324* 5

Asterisks are included for scores less than one, indicative of concentration

Table 2 Dispersion measures for urbanization level

Total Large SMEs

Score Nr. firms Score Nr. firms Score Nr. Firms

None − 1 – – 0.000000* 1

Weakly 1.0649 7 0.664623* 5 0.609638* 2

Little 0.9204∗ 14 0.000000* 1 1.067805 13

Strong 1.0611 25 0.811486* 7 1.016778 18

Very strong 1.0249 13 0.530498* 6 0.824621* 7

Asterisks are included for scores less than one, indicative of concentration

patterns related to a strong influence of size, when we consider large and small firms
separately, both geographical location and urbanization levels tend to show systematic
patterns of concentration in the SOM, which means that firms with those characteristics
tend to have a largely similar performance.

5.4 SOM analysis of efficient and super-efficient firms

The final part of this section connects the high-dimensional SOM analysis presented
above with an alternative approach of obtaining and using composite indices. The
first step is to employ a straightforward efficiency analysis (Sect. 5.4), followed by a
multivariate data reduction analysis (Sect. 5.5).

First, we carry out an exploration in the spirit of the SOM approach presented before,
but now the variable we map onto the SOM is a quantitative index of performance
derived from (a new variant of) Data Envelopment Analysis (DEA). DEA finds its
origin in activity analysis, and more specifically in multi-product linear programming
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analysis (see Charnes et al. 1978; Caragliu et al. 2011). It has found a great diversity of
business applications all over the world. Its main idea is to find a numerical expression
(based on a performance score ranging from 0 to 1, with 1 being the highest score or
the highest efficiency level). We refer, for details, to Suzuki et al. (2010); Suzuki et al.
(2011) for spatial DEA applications, viz. to smart infrastructures and to smart regions.

Application of DEA by means of the standard CCR-I method (see Charnes et al.
1978) to our sample of 60 firms—with a further subdivision into their size over the
period 2008—leads to the results presented in Appendix C. It turns out that most of the
large firms and SMEs belong to the category of efficient firms (which means that they
are all located on the efficiency frontier), while for all others there is still scope for an
improvement of their performance. But this does mean that it is equally easy for their
business to maintain its position or to improve its future position. Thus, by analyzing
their scope for marginal improvement efforts what is called ‘super-efficiency analysis’
may be carried out (for more details on DEA, see Suzuki and Nijkamp 2011; Nijkamp
and Suzuki 2009; Caragliu et al. 2011). This leads to a complete ranking of all firms
considered, including the ones which have an efficiency score 1.

The super-efficient DEA results show much more variation over the entire set of
efficient large firms and SMEs, which essentially means that, in the long run, there
is ample space for improvement among all firms. Thus, the use of DEA allows an
informed discussion on the relative achievement levels of all firms, in particular since
this analysis offers clear information on the strong points of a firm, as well on the
weak points that need due care.

The numerical DEA results—both the standard CCR-I and the super-efficient DEA
results—allow us to apply a SOM analysis again. In this way, we may characterize
different regions of the SOM according to high or low performance, based on the
standard DEA index and the super-efficient index. These results are given in Fig. 6.

Figure 6a divides the firms into those with an efficiency score of 1 (dark) and those
below that level (white). When, as above, we calculate the dispersion measure for those
firms with a score of 1, we obtain 0.97, which implies they do not tend to be closer to
each other than the average. Still, if we compute the measure for large and small firms,
we obtain 0.59 and 1.05; this means that, once we take size into account, large firms
with a score of one do tend to locate near to each other on the SOM. This is rather in
line with the results in Tables 1 and 2: large firms show common characteristics and
tend to locate in similar regions of the statistical space.

Figure 6b presents the map based on a super-efficient DEA in which the index has
been plotted along gradient from white (lower values) to dark (higher ones). In this
case, it is easier to derive some patterns: the upper left corner shows the lightest colors
while, as one moves down-right, the colors darken, although in a more fuzzy fashion.
This implies that the former region of the map may be identified with low performance
scores, while the latter displays higher ones and, in this sense, is the winner area of
the SOM.

As a complement to Fig. 6a and b, c displays the component planes of the perfor-
mance variables used to train the SOM. As explained in Sect. 3, the planes of a SOM
are the representation of the values of each of the variables onto the map. They show
the distribution of that component over the trained network, allowing us to identify
regions of high and low values of the variable concerned.
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Fig. 6 Distribution of DEA scores and performance planes. c Please see footnote 10. In particular, the
footnote should refer to Table 4 in Appendix A

Given the characteristics of the database, each plane10 shows the areas of the SOM
with high (dark) and low (white) levels of that factor of performance, dark always
implying a better performance. As an illustration, plane number 1 displays the dis-
tribution of values of the variable (‘increase in revenue’). We can observe how the
lowest ones (white) appear in the upper-left part of the SOM, which in turn is the area
where the firms with low efficiency and low super-efficiency scores also appear to be
located; on the contrary, the highest values may be found on the opposite side of the
SOM, the lower right area, which in this case also coincides with the location of some
of the firms with high efficiency scores.

Two main conclusions can be drawn from the picture. On the one hand, it offers a
good visualization of the complexity embedded in the concept of performance: if all
the variables were distributed the same way, it would imply that a high-dimensional
analysis is not needed, because each could be representative of the general behavior.

10 The planes in Fig. 6c are labeled with a number (1–48) for reasons of lack of space. For some examples
of corresponding variables, the reader is referred to Appendix A.
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Clearly, high values of each variable are distributed in very diverse ways across the
SOM, justifying the approach presented in this paper. On the other hand, there are
some characteristics that apply to the majority of the planes. As an example, most of
the lowest values (white) tend to be located in the left and upper-left part; although
high values (dark) distribute in more varied ways, in most cases, they tend to be located
in the lower right-hand region of the map. Such patterns reconcile the SOM approach
with the one derived from the DEA analysis which was based on a single composite
index and may be seen as a robustness check for both results. We may thus conclude
that the DEA analysis supports the SOM results.

5.5 A multivariate approach to SOM

Finally, it may be important to explore the results of a multivariate analysis of the
massive volume of data in our SOM experiment. The large amount of data in our
investigation may incorporate quite considerable dependency among the various vari-
ables. To avoid an unwanted bias in our SOM analysis, it is therefore interesting to
apply a Principal Component Analysis (PCA) to each of the 8 clusters in the regional
data set and to each of the 3 clusters in the firm data set (see also Fig. 2). The SOM
can next be applied to the main orthogonal components identified in the PCA. The
results are concisely presented in Appendix B. They show a high degree of similarity
to those presented in Figs. 3b and 4. This implies that our original SOM analysis leads
to robust results, which are also supported by a PCA.

6 Retrospective and prospective remarks

This paper has demonstrated that systemic complexity in space needs a wealth of data
to be explored. Cognitive approaches like SOM analysis may be extremely helpful
in identifying interesting and novel patterns in high-dimensional data sets of SPM
initiatives of business firms.

In the empirical part of our study, we looked at the issue of firm performance and
regional effects from an exploratory perspective, using the SOM as the main methodol-
ogy and complementing it with other approaches, such as DEA and PCA. In doing so,
we sought to shed some light on the main patterns across Dutch firms in terms of their
performance in distinct regions, as well as on the drivers that determine such outcomes.

The results point to the size of the firm as the main variable behind the distribution
of business performance; firms in the same size category appear to locate in the same
regions of the SOM, implying a high degree of similarity. Other variables such as
regional location or degree of urbanization do not show such strong systematic pat-
terns; however, once the size is taken into account, regional effects show up in various
provinces (e.g., Limburg and Utrecht), and the degree of urbanization also shows some
agglomeration patterns in the SOM, suggesting that firms in areas which are equally
urbanized tend to have a similar profile in terms of business performance.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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Appendix A: Overview of general micro- and macro- databases

This Appendix offers a concise overview of the main categories of variables used
in our study, both the spatial variables (Table 3) and the firm-specific variables
(Table 4).

Table 3 Regional and location-specific data (2008)

8 Cluster indicators Type of indicators

Creative Capital (CC) (60 variables) High education and institutions

Meeting points/relations

Breeding places (creative clusters)

Creative professionals/talent

Multicultural neighborhoods/ good quality of place

Human Capital (HC) (60 variables) Economically active population

Number of households

Proportion of employees in sectors

Population density

GDP

Population

Economic Capital (EC) (60 variables) Number of financial sources

Number of new businesses registered in reference year

Total number of firms

Birth-rate businesses

Number of vacancies

Knowledge Capital (KC) (50 variables) Number of patents

Investment climate: innovation

Investment climate: market competition

Total number of innovators with related products
and/or process innovations

Number of highly-educated employees

Social Capital (SC) (50 variables) Rapport score living conditions

Number of care and nursing homes, hospitals &
service apartments

Restaurants

Number of post offices

Diversity of religions

Hospitals and health centres

Technological Capital (TC) (30 variables) Percentage of households with Internet access at home

Number of local units manufacturing ICT products

Proportion of households with broadband access

Number of DigiD-owners

Telephone mainlines per capita
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Table 3 continued

8 Cluster indicators Type of indicators

Cultural Capital (CLC) (50 variables) Total number of libraries and book loans

Number of cinemas

Number of theatres

Number of museums

Number of recreation places

Connectivity & Infrastructure (CF) (50 variables) Number of public transport systems

Mobility of people and goods/services

Traffic density

Travel time between living areas and work

Number of runways at airports

Table 4 Business performance data (2008)

3 Cluster indicators Some examples of indicators

High Result Orientation (HRO) (16 variables) Higher quality

Higher turnover

More innovativeness

Decrease in costs

Higher pro-activity

High Quality Business (HQB) (16 variables) Higher operational efficiency

Better process orientation

Better knowlegde sharing and information
exchange between organisational units

More effective management control

Better quality performance information

Better Understanding Strategy (BUS) (16 variables) More clarity for people about their roles and goals

Better understanding of the strategy by people

Higher employee satisfaction

Better strategic planning process

More clarity for people about their roles and goals

Appendix B: Integration of SOM and PCA

In this Appendix, we present an experiment in which we combine the results from
a Principle Component Analysis (PCA) with the SOM framework. The main idea is
that we use a PCA to extract the main indicators in each cluster of the model (see
Fig. 2), and next we employ these main factors as the input data for the SOM, which
we then run in a similar fashion as in previous cases. These results are mapped out in
Fig. 7.
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Fig. 7 SOM based on PCA
(spatial factors)

Figure 7 represents the analog of Fig. 3a in the present paper; the different provinces
have been used as observations to feed an algorithm, but now the attribute data are
not the long list of raw indicators but the main factors obtained after applying PCA
to this raw data set, following the model outlined in Sect. 4. The rationale behind this
approach is twofold: on the one hand, it serves as a robustness check of the results from
Sect. 5, to explore how variations of the data might affect the final map; on the other
hand, using the main factors of each cluster implies that each of the model’s clusters
are given the same weight,11 which may serve as a test of the model suggested when
compared with the raw results.

In order to ease the interpretation, only the regions have been labeled in Fig. 7.
Before proceeding with the comparison, it is also important to remark that even if the
results were similar, the new map does not need to be exactly the same as the previous
one. The reason resides in the heuristic nature of the SOM algorithm, which may start
assigning different random values that result in an overall different configuration of
the observations.

A key aspect that deserves attention is the internal configuration and the relation-
ships of the different observations, not particularly their location on the map. Thus, in
comparing both maps (Figs. 3a and 7), the conclusion is that most of the bilateral asso-
ciations between provinces are maintained across the two complimentary approaches.
Clearly, it seems as though the axes have been somehow flipped, but the topological
relationships between provinces remain the same: Overijssel, Zeeland, and Drenthe
are aligned across one of the edges, even though in one case it is the horizontal edge
and in the other it is the vertical one, showing slightly more dispersal when the PCA
is used; Utrecht and Noord-Brabant are one more cell away when the PCA is used,
but they nevertheless remain at a similar distance, now aligned vertically instead of
horizontally; Noord-Holland and Zuid-Holland remain very close to each other in both

11 Note that the SOM weights each dimension in the same way, unless it is explicitly stated otherwise.
Thus, if there are more indicators for one cluster than for another, as is the case in our experiment, some
clusters will be given more importance and others less when it comes to decide on the mapping of the
observations.
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Fig. 8 SOM based on PCA (business performance)

Fig. 9 Standard DEA (CCR-I) score of 19 Dutch large firms (2008)

cases. Only a few provinces change their position more significantly, viz. Limburg and
Gelderland.

Next, Fig. 8 displays the analog of Fig. 4 in the paper, but instead of using the
raw data, we now employ the independent factors from a PCA. As mentioned in
Sect. 5.5, the PCA was computed for three different clusters following the model out-
lined in Fig. 2, viz. High Result Orientation (HRO), High Quality Business (HQB),
and Better Understanding Strategy (BUS). Although the general configuration has
somewhat changed (which was to be expected due to the heuristic nature of the SOM
algorithm), we can clearly see that the internal relationships between the firms remain
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similar. In particular, the distribution based on size equally exhibits the dramatic split
that we observed in the previous case between large and small firms, supporting the
conclusions drawn in the main part of the paper.

Appendix C: DEA results for efficient and super-efficient firms

In this Appendix, we present the empirical results for the DEA approach to analyzing
the sample of large and small firms, using both the CCR-1 DEA algorithm and the
super-efficiency DEA algorithm (see Figs. 9, 10, 11 and 12).

Fig. 10 Super-efficiency score of 19 large firms (2008)

Fig. 11 Standard DEA (CCR-I) score of 41 Dutch SMEs firms (2008)
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Fig. 12 Super-efficiency score of 41 SMEs firms (2008)
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