3 research outputs found

    Time in a Bottle: The Evolutionary Fate of Species Discrimination in Sibling Drosophila Species

    Get PDF
    Disadvantageous hybridization favors the evolution of prezygotic isolating behaviors, generating a geographic pattern of interspecific mate discrimination where members of different species drawn from sympatric populations exhibit stronger preference for members of their own species than do individuals drawn from allopatric populations. Geographic shifts in species' boundaries can relax local selection against hybridization; under such scenarios the fate of enhanced species preference is unknown. Lineages established from populations in the region of sympatry that have been maintained as single-species laboratory cultures represent cases where allopatry has been produced experimentally. Using such cultures dating from the 1950s, we assess how Drosophila pseudoobscura and D. persimilis mate preferences respond to relaxed natural selection against hybridization. We found that the propensity to hybridize generally declines with increasing time in experimental allopatry, suggesting that maintaining enhanced preference for conspecifics may be costly. However, our data also suggest a strong role for drift in determining mating preferences once secondary allopatry has been established. Finally, we discuss the interplay between populations in establishing the presence or absence of patterns consistent with reinforcement

    Visual mate preference evolution during butterfly speciation is linked to neural processing genes

    Get PDF
    Abstract: Many animal species remain separate not because their individuals fail to produce viable hybrids but because they “choose” not to mate. However, we still know very little of the genetic mechanisms underlying changes in these mate preference behaviours. Heliconius butterflies display bright warning patterns, which they also use to recognize conspecifics. Here, we couple QTL for divergence in visual preference behaviours with population genomic and gene expression analyses of neural tissue (central brain, optic lobes and ommatidia) across development in two sympatric Heliconius species. Within a region containing 200 genes, we identify five genes that are strongly associated with divergent visual preferences. Three of these have previously been implicated in key components of neural signalling (specifically an ionotropic glutamate receptor and two regucalcins), and overall our candidates suggest shifts in behaviour involve changes in visual integration or processing. This would allow preference evolution without altering perception of the wider environment
    corecore