542 research outputs found

    Design and development of 3D printed catalytically-active stirrers for chemical synthesis

    Get PDF
    In this present study, we describe the novel design, preparation and evaluation of catalyst-impregnated stirrer beads for chemical synthesis. Using a low-cost SLA 3D printer and freeware design software, a high surface area holder for a magnetic stirrer bead was developed and 3D printed containing p-toluenesulfonic acid. The devices were used to efficiently catalyze Mannich reactions in excellent yields and it was demonstrated that the devices can be re-used up to 5-times with excellent reproducibility

    Extending practical flow chemistry into the undergraduate curriculum via the use of a portable low-cost 3D printed continuous flow system

    Get PDF
    Continuous flow chemistry is undergoing rapid growth and adoption within the pharmaceutical industry due to its ability to rapidly translate chemical discoveries from medicinal chemistry laboratories into process laboratories. Its growing significance means that it is imperative that flow chemistry is taught and experienced by both undergraduate and postgraduate synthetic chemists. However, whilst flow chemistry has been incorporated by industry, there remains a distinct lack of practical training and knowledge at both undergraduate and postgraduate levels. A key challenge associated with its implementation is the high cost (>$25,000) of the system’s themselves, which is far beyond the financial reach of most universities and research groups, meaning that this key technology remains open to only a few groups and that its associated training remains a theoretical rather than a practical subject. In order to increase access to flow chemistry, we sought to design and develop a small-footprint, low-cost and portable continuous flow system that could be used to teach flow chemistry, but that could also be used by research groups looking to transition to continuous flow chemistry. A key element of its utility focusses on its 3D printed nature, as low-cost reactors could be readily incorporated and modified to suit differing needs and educational requirements. In this paper, we demonstrate the system’s flexibility using reactors and mixing chips designed and 3D printed by an undergraduate project student (N.T.) and show how the flexibility of the system allows the investigation of differing flow paths on the same continuous flow system in parallel

    An Interactive Ontology for the Itertidal Fish of the Cape

    Get PDF
    This paper describes the design and implementation of an interactive identification guide for the intertidal fish of the Cape. Its aim is to create an interactive navigational system to improve the process of identifying fish species based on their feature. This system uses Topic Map as data structure to represent ontology information. It is separated into three parts: knowledge representation, Topic Map query language and Visualization

    Confocal laser scanning, scanning electron, and transmission electron microscopy investigation of Enterococcus faecalis biofilm degradation using passive and active sodium hypochlorite irrigation within a simulated root canal model

    Get PDF
    Root canal irrigation is an important adjunct to control microbial infection. The aim of this study was to investigate the effect of 2.5% (wt/vol) sodium hypochlorite (NaOCl) agitation on the removal, killing, and degradation of Enterococcus faecalis biofilm. A total of 45 root canal models were manufactured using 3D printing with each model comprising an 18 mm length simulated root canal of apical size 30 and taper 0.06. E. faecalis biofilms were grown on the apical 3 mm of the models for 10 days. A total of 60 s of 9 ml of 2.5% NaOCl irrigation using syringe and needle was performed, the irrigant was either left stagnant in the canal or agitated using manual (Gutta-percha), sonic, and ultrasonic methods for 30 s. Following irrigation, the residual biofilms were observed using confocal laser scanning, scanning electron, and transmission electron microscopy. The data were analyzed using one-way ANOVA with Dunnett post hoc tests at a level of significance p ≤ .05. Consequence of root canal irrigation indicate that the reduction in the amount of biofilm achieved with the active irrigation groups (manual, sonic, and ultrasonic) was significantly greater when compared with the passive and untreated groups (p < .05). Collectively, finding indicate that passive irrigation exhibited more residual biofilm on the model surface than irrigant agitated by manual or automated (sonic, ultrasonic) methods. Total biofilm degradation and nonviable cells were associated with the ultrasonic group

    3D Printed Franz cells - update on optimization of manufacture and evaluation

    Get PDF
    The evaluation of permeation profiles from cosmetic formulations is considered to be a crucial component in both the development and quality assurance of any new product [1, 2]. Data gathered from such studies allow researchers to assess the viability of delivering different materials to and through biological membranes. To date, laboratory in vitro permeation processes require the use of modified Franz type diffusion cells, conventionally fabricated from glass, which are available in different formats that can be customised to experimental requirements [3]

    The effect of sodium hypochlorite concentration and irrigation needle extension on biofilm removal from a simulated root canal model

    Get PDF
    To investigate the effect of sodium hypochlorite concentration and needle extension on removal of Enterococcus faecalis biofilm, sixty root canal models were 3D printed. Biofilms were grown on the apical 3 mm of the canal for 10 days. Irrigation for 60s with 9 mL of either 5.25% or 2.5% NaOCl or water was performed using a needle inserted either 3 or 2 mm from the canal terminus and imaged using fluorescence microscopy and residual biofilm percentages were calculated using imaging software. The data were analysed using analysis of covariance and two-sample t-tests. A significance level of 0.05 was used throughout. Residual biofilm was less using 5.25% than with 2.5% NaOCl. Statistically significant biofilm removal was evident with the needle placed closer to the canal terminus. A greater reduction of available chlorine and pH was noted as the concentration increased. One-minute irrigation was not sufficient for complete biofilm removal

    Compact 3-manifolds via 4-colored graphs

    Get PDF
    We introduce a representation of compact 3-manifolds without spherical boundary components via (regular) 4-colored graphs, which turns out to be very convenient for computer aided study and tabulation. Our construction is a direct generalization of the one given in the eighties by S. Lins for closed 3-manifolds, which is in turn dual to the earlier construction introduced by Pezzana's school in Modena. In this context we establish some results concerning fundamental groups, connected sums, moves between graphs representing the same manifold, Heegaard genus and complexity, as well as an enumeration and classification of compact 3-manifolds representable by graphs with few vertices (≤6\le 6 in the non-orientable case and ≤8\le 8 in the orientable one).Comment: 25 pages, 11 figures; changes suggested by referee: references added, figure 2 modified, results about classification of the manifolds in Proposition 17 announced at the end of section 9. Accepted for publication in RACSAM. The final publication is available at Springer (see DOI

    Three-Dimensional Printing of a Scalable Molecular Model and Orbital Kit for Organic Chemistry Teaching and Learning

    Get PDF
    Three-dimensional (3D) chemical models are a well-established learning tool used to enhance the understanding of chemical structures by converting two-dimensional paper or screen outputs into realistic three-dimensional objects. While commercial atom model kits are readily available, there is a surprising lack of large molecular and orbital models that could be used in large spaces. As part of a program investigating the utility of 3D printing in teaching, a modular size-adjustable molecular model and orbital kit was developed and produced using 3D printing and was used to enhance the teaching of stereochemistry, isomerism, hybridization, and orbitals

    All clinically-relevant blood components transmit prion disease following a single blood transfusion: a sheep model of vCJD

    Get PDF
    Variant CJD (vCJD) is an incurable, infectious human disease, likely arising from the consumption of BSE-contaminated meat products. Whilst the epidemic appears to be waning, there is much concern that vCJD infection may be perpetuated in humans by the transfusion of contaminated blood products. Since 2004, several cases of transfusion-associated vCJD transmission have been reported and linked to blood collected from pre-clinically affected donors. Using an animal model in which the disease manifested resembles that of humans affected with vCJD, we examined which blood components used in human medicine are likely to pose the greatest risk of transmitting vCJD via transfusion. We collected two full units of blood from BSE-infected donor animals during the pre-clinical phase of infection. Using methods employed by transfusion services we prepared red cell concentrates, plasma and platelets units (including leucoreduced equivalents). Following transfusion, we showed that all components contain sufficient levels of infectivity to cause disease following only a single transfusion and also that leucoreduction did not prevent disease transmission. These data suggest that all blood components are vectors for prion disease transmission, and highlight the importance of multiple control measures to minimise the risk of human to human transmission of vCJD by blood transfusion
    • …
    corecore