143 research outputs found
The evolution and variety of RFamide-type neuropeptides: insights from deuterostomian invertebrates
Five families of neuropeptides that have a C-terminal RFamide motif have been identified in vertebrates: (1) gonadotropin-inhibitory hormone (GnIH), (2) neuropeptide FF (NPFF), (3) pyroglutamylated RFamide peptide (QRFP), (4) prolactin-releasing peptide (PrRP), and (5) Kisspeptin. Experimental demonstration of neuropeptide–receptor pairings combined with comprehensive analysis of genomic and/or transcriptomic sequence data indicate that, with the exception of the deuterostomian PrRP system, the evolutionary origins of these neuropeptides can be traced back to the common ancestor of bilaterians. Here, we review the occurrence of homologs of vertebrate RFamide-type neuropeptides and their receptors in deuterostomian invertebrates – urochordates, cephalochordates, hemichordates, and echinoderms. Extending analysis of the occurrence of the RFamide motif in other bilaterian neuropeptide families reveals RFamide-type peptides that have acquired modified C-terminal characteristics in the vertebrate lineage (e.g., NPY/NPF), neuropeptide families where the RFamide motif is unique to protostomian members (e.g., CCK/sulfakinins), and RFamide-type peptides that have been lost in the vertebrate lineage (e.g., luqins). Furthermore, the RFamide motif is also a feature of neuropeptide families with a more restricted phylogenetic distribution (e.g., the prototypical FMRFamide-related neuropeptides in protostomes). Thus, the RFamide motif is both an ancient and a convergent feature of neuropeptides, with conservation, acquisition, or loss of this motif occurring in different branches of the animal kingdom
The neuropeptide transcriptome of a model echinoderm, the sea urchin Strongylocentrotus purpuratus
The work reported here was supported by a grant from the University of London Central Research Fun
The Evolution and Diversity of SALMFamide Neuropeptides
The SALMFamides are a family of neuropeptides that act as muscle relaxants in echinoderms. Two types of SALMFamides have been identified: L-type (e.g. the starfish neuropeptides S1 and S2) with the C-terminal motif LxFamide (x is variable) and F-type with the C-terminal motif FxFamide. In the sea urchin Strongylocentrotus purpuratus (class Echinoidea) there are two SALMFamide genes, one encoding L-type SALMFamides and a second encoding F-type SALMFamides, but hitherto it was not known if this applies to other echinoderms. Here we report the identification of SALMFamide genes in the sea cucumber Apostichopus japonicus (class Holothuroidea) and the starfish Patiria miniata (class Asteroidea). In both species there are two SALMFamide genes: one gene encoding L-type SALMFamides (e.g. S1 in P. miniata) and a second gene encoding F-type SALMFamides plus one or more L-type SALMFamides (e.g. S2-like peptide in P. miniata). Thus, the ancestry of the two SALMFamide gene types traces back to the common ancestor of echinoids, holothurians and asteroids, although it is not clear if the occurrence of L-type peptides in F-type SALMFamide precursors is an ancestral or derived character. The gene sequences also reveal a remarkable diversity of SALMFamide neuropeptides. Originally just two peptides (S1 and S2) were isolated from starfish but now we find that in P. miniata, for example, there are sixteen putative SALMFamide neuropeptides. Thus, the SALMFamides would be a good model system for experimental analysis of the physiological significance of neuropeptide "cocktails" derived from the same precursor protein
Localization of N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD) expression in mouse brain: A new perspective on N-acylethanolamines as Neural Signaling Molecules
The definitive version is available at www3.interscience.wiley.co
Roles of copper in neurokinin B and gonadotropin-releasing hormone structure and function and the endocrinology of reproduction
Copper is a metal ion present in all organisms, where it has well-known roles in association with proteins and enzymes essential for cellular processes. In the early decades of the twentieth century copper was shown to influence mammalian reproductive biology, and it was subsequently shown to exert effects primarily at the level of the pituitary gland and/or hypothalamic regions of the brain. Furthermore, it has been reported that copper can interact with key neuropeptides in the hypothalamic-pituitary-gonadal axis, notably gonadotropin-releasing hormone (GnRH) and neurokinin B. Interestingly, recent phylogenetic analysis of the sequences of GnRH-related peptides indicates that copper binding is an evolutionarily ancient property of this neuropeptide family, which has been variously retained, modified or lost in the different taxa. In this mini-review the metal-binding properties of neuropeptides in the vertebrate reproductive pathway are reviewed and the evolutionary and functional significance of copper binding by GnRH-related neuropeptides in vertebrates and invertebrates are discussed
Unlocking the secrets of mutable collagenous tissue
© Biochemical Society. The mutable collagenous tissue (MCT) of echinoderms (e.g. sea cucumbers, starfish and sea urchins) is unique because of its ability to 'switch' mechanical states rapidly and reversibly - from stiff to soft and vice versa. This kind of tissue in humans, for example, in skin, tendons and ligaments, does not have this property. So what are the molecular-level secrets by which MCT achieves this transformative ability? New real-time ultrastructural investigations are beginning to shed light on this question. Synchrotron X-ray measurements of dynamic molecular conformational changes point to the key factor being the gel-like matrix between the collagen fibrils. These findings could have applications for developing treatments for collagen-based disorders
- …