142 research outputs found

    Rofecoxib for dysmenorrhoea: meta-analysis using individual patient data

    Get PDF
    BACKGROUND: Individual patient meta-analysis to determine the analgesic efficacy and adverse effects of single-dose rofecoxib in primary dysmenorrhoea. METHODS: Individual patient information was available from three randomised, double blind, placebo and active controlled trials of rofecoxib. Data were combined through meta-analysis. Number-needed-to-treat (NNT) for at least 50% pain relief and the proportion of patients who had taken rescue medication over 12 hours were calculated. Information was collected on adverse effects. RESULTS: For single-dose rofecoxib 50 mg compared with placebo, the NNTs (with 95% CI) for at least 50% pain relief were 3.2 (2.4 to 4.5) at six, 3.1 (2.4 to 9.0) at eight, and 3.7 (2.8 to 5.6) at 12 hours. For naproxen sodium 550 mg they were 3.1 (2.4 to 4.4) at six, 3.0 (2.3 to 4.2) at eight, and 3.8 (2.7 to 6.1) at 12 hours. The proportion of patients who needed rescue medication within 12 hours was 27% with rofecoxib 50 mg, 29% with naproxen sodium 550 mg, and 50% with placebo. In the single-dose trial, the proportion of patients reporting any adverse effect was 8% (4/49) with rofecoxib 50 mg, 12% (6/49) with ibuprofen 400 mg, and 6% (3/49) with placebo. In the other two multiple dose trials, the proportion of patients reporting any adverse effect was 23% (42/179) with rofecoxib 50 mg, 24% (45/181) with naproxen sodium 550 mg, and 18% (33/178) with placebo. CONCLUSIONS: Single dose rofecoxib 50 mg provided similar pain relief to naproxen sodium 550 mg over 12 hours. The duration of analgesia with rofecoxib 50 mg was similar to that of naproxen sodium 550 mg. Adverse effects were uncommon suggesting safety in short-term use of rofecoxib and naproxen sodium. Future research should include restriction on daily life and absence from work or school as outcomes

    Calculating the potential for within-flight transmission of influenza A (H1N1)

    Get PDF
    Abstract Background Clearly air travel, by transporting infectious individuals from one geographic location to another, significantly affects the rate of spread of influenza A (H1N1). However, the possibility of within-flight transmission of H1N1 has not been evaluated; although it is known that smallpox, measles, tuberculosis, SARS and seasonal influenza can be transmitted during commercial flights. Here we present the first quantitative risk assessment to assess the potential for within-flight transmission of H1N1. Methods We model airborne transmission of infectious viral particles of H1N1 within a Boeing 747 using methodology from the field of quantitative microbial risk assessment. Results The risk of catching H1N1 will essentially be confined to passengers travelling in the same cabin as the source case. Not surprisingly, we find that the longer the flight the greater the number of infections that can be expected. We calculate that H1N1, even during long flights, poses a low to moderate within-flight transmission risk if the source case travels First Class. Specifically, 0-1 infections could occur during a 5 hour flight, 1-3 during an 11 hour flight and 2-5 during a 17 hour flight. However, within-flight transmission could be significant, particularly during long flights, if the source case travels in Economy Class. Specifically, two to five infections could occur during a 5 hour flight, 5-10 during an 11 hour flight and 7-17 during a 17 hour flight. If the aircraft is only partially loaded, under certain conditions more infections could occur in First Class than in Economy Class. During a 17 hour flight, a greater number of infections would occur in First Class than in Economy if the First Class Cabin is fully occupied, but Economy class is less than 30% full. Conclusions Our results provide insights into the potential utility of air travel restrictions on controlling influenza pandemics in the winter of 2009/2010. They show travel by one infectious individual, rather than causing a single outbreak of H1N1, could cause several simultaneous outbreaks. These results imply that, during a pandemic, quarantining passengers who travel in Economy on long-haul flights could potentially be an important control strategy. Notably, our results show that quarantining passengers who travel First Class would be unlikely to be an effective control strategy

    Characterising B cell numbers and memory B cells in HIV infected and uninfected Malawian adults

    Get PDF
    BACKGROUND: Untreated human immunodeficiency virus (HIV) disease disrupts B cell populations causing reduced memory and reduced naïve resting B cells leading to increases in specific co-infections and impaired responses to vaccines. To what extent antiretroviral treatment reverses these changes in an African population is uncertain. METHODS: A cross-sectional study was performed. We recruited HIV-uninfected and HIV-infected Malawian adults both on and off antiretroviral therapy attending the Queen Elizabeth Central hospital in Malawi. Using flow cytometry, we enumerated B cells and characterized memory B cells and compared these measurements by the different recruitment groups. RESULTS: Overall 64 participants were recruited - 20 HIV uninfected (HIV-), 30 HIV infected ART naïve (HIV+N) and 14 HIV-infected ART treated (HIV+T). ART treatment had been taken for a median of 33 months (Range 12-60 months). Compared to HIV- the HIV+N adults had low absolute number of naïve resting B cells (111 vs. 180 cells/μl p = 0.008); reduced memory B cells (27 vs. 51 cells/μl p = 0.0008). The HIV+T adults had B-cell numbers similar to HIV- except for memory B cells that remained significantly lower (30 vs. 51 cells/μl p = 0.02). In the HIV+N group we did not find an association between CD4 count and B cell numbers. CONCLUSIONS: HIV infected Malawian adults have abnormal B-cell numbers. Individuals treated with ART show a return to normal in B-cell numbers but a persistent deficit in the memory subset is noted. This has important implications for long term susceptibility to co-infections and should be evaluated further in a larger cohort study

    Triple-gated motion and blood pool clearance corrections improve reproducibility of coronary 18F-NaF PET

    Get PDF
    PurposeTo improve the test-retest reproducibility of coronary plaque 18F-sodium fluoride (18F-NaF) positron emission tomography (PET) uptake measurements.MethodsWe recruited 20 patients with coronary artery disease who underwent repeated hybrid PET/CT angiography (CTA) imaging within 3 weeks. All patients had 30-min PET acquisition and CTA during a single imaging session. Five PET image-sets with progressive motion correction were reconstructed: (i) a static dataset (no-MC), (ii) end-diastolic PET (standard), (iii) cardiac motion corrected (MC), (iv) combined cardiac and gross patient motion corrected (2 × MC) and, (v) cardiorespiratory and gross patient motion corrected (3 × MC). In addition to motion correction, all datasets were corrected for variations in the background activities which are introduced by variations in the injection-to-scan delays (background blood pool clearance correction, BC). Test-retest reproducibility of PET target-to-background ratio (TBR) was assessed by Bland-Altman analysis and coefficient of reproducibility.ResultsA total of 47 unique coronary lesions were identified on CTA. Motion correction in combination with BC improved the PET TBR test-retest reproducibility for all lesions (coefficient of reproducibility: standard = 0.437, no-MC = 0.345 (27% improvement), standard + BC = 0.365 (20% improvement), no-MC + BC = 0.341 (27% improvement), MC + BC = 0.288 (52% improvement), 2 × MC + BC = 0.278 (57% improvement) and 3 × C + BC = 0.254 (72% improvement), all p < 0.001). Importantly, in a sub-analysis of 18F-NaF-avid lesions with gross patient motion > 10 mm following corrections, reproducibility was improved by 133% (coefficient of reproducibility: standard = 0.745, 3 × MC = 0.320).ConclusionJoint corrections for cardiac, respiratory, and gross patient motion in combination with background blood pool corrections markedly improve test-retest reproducibility of coronary 18F-NaF PET

    Respiration-averaged CT versus standard CT attenuation maps for correction of the 18F-NaF uptake in hybrid PET/CT

    Get PDF
    BACKGROUND: To evaluate the impact of respiratory-averaged computed tomography attenuation correction (RACTAC) compared to standard single-phase computed tomography attenuation correction (CTAC) map, on the quantitative measures of coronary atherosclerotic lesions of (18)F-sodium fluoride ((18)F-NaF) uptake in hybrid positron emission tomography and computed tomography (PET/CT). METHODS: This study comprised 23 patients who underwent (18)F-NaF coronary PET in a hybrid PET/CT system. All patients had a standard single-phase CTAC obtained during free-breathing and a 4D cine-CT scan. From the cine-CT acquisition, RACTAC maps were obtained by averaging all images acquired over 5 seconds. PET reconstructions using either CTAC or RACTAC were compared. The quantitative impact of employing RACTAC was assessed using maximum target-to-background (TBR(MAX)) and coronary microcalcification activity (CMA). Statistical differences were analyzed using reproducibility coefficients and Bland-Altman plots. RESULTS: In 23 patients, we evaluated 34 coronary lesions using CTAC and RACTAC reconstructions. There was good agreement between CTAC and RACTAC for TBR(MAX) (median [Interquartile range]): CTAC= 1.65[1.23–2.38], RACTAC= 1.63[1.23–2.33], p=0.55), with coefficient of reproducibility of 0.18, and CMA: CTAC= 0.10 [0–1.0], RACTAC= 0.15[0–1.03], p=0.55 with coefficient of reproducibility of 0.17 CONCLUSION: Respiratory-averaged and standard single-phase attenuation correction maps provide similar and reproducible methods of quantifying coronary (18)F-NaF uptake on PET/CT

    Outbreak of Pneumonia in the Setting of Fatal Pneumococcal Meningitis among US Army Trainees: Potential Role of Chlamydia pneumoniae Infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Compared to the civilian population, military trainees are often at increased risk for respiratory infections. We investigated an outbreak of radiologically-confirmed pneumonia that was recognized after 2 fatal cases of serotype 7F pneumococcal meningitis were reported in a 303-person military trainee company (Alpha Company).</p> <p>Methods</p> <p>We reviewed surveillance data on pneumonia and febrile respiratory illness at the training facility; conducted chart reviews for cases of radiologically-confirmed pneumonia; and administered surveys and collected nasopharyngeal swabs from trainees in the outbreak battalion (Alpha and Hotel Companies), associated training staff, and trainees newly joining the battalion.</p> <p>Results</p> <p>Among Alpha and Hotel Company trainees, the average weekly attack rates of radiologically-confirmed pneumonia were 1.4% and 1.2% (most other companies at FLW: 0-0.4%). The pneumococcal carriage rate among all Alpha Company trainees was 15% with a predominance of serotypes 7F and 3. <it>Chlamydia pneumoniae </it>was identified from 31% of specimens collected from Alpha Company trainees with respiratory symptoms.</p> <p>Conclusion</p> <p>Although the etiology of the outbreak remains unclear, the identification of both <it>S. pneumoniae </it>and <it>C. pneumoniae </it>among trainees suggests that both pathogens may have contributed either independently or as cofactors to the observed increased incidence of pneumonia in the outbreak battalion and should be considered as possible etiologies in outbreaks of pneumonia in the military population.</p

    Humoral and Cell-Mediated Immunity to Pandemic H1N1 Influenza in a Canadian Cohort One Year Post-Pandemic: Implications for Vaccination

    Get PDF
    We evaluated a cohort of Canadian donors for T cell and antibody responses against influenza A/California/7/2009 (pH1N1) at 8-10 months after the 2nd pandemic wave by flow cytometry and microneutralization assays. Memory CD8 T cell responses to pH1N1 were detectable in 58% (61/105) of donors. These responses were largely due to cross-reactive CD8 T cell epitopes as, for those donors tested, similar recall responses were obtained to A/California 2009 and A/PR8 1934 H1N1 Hviruses. Longitudinal analysis of a single infected individual showed only a small and transient increase in neutralizing antibody levels, but a robust CD8 T cell response that rose rapidly post symptom onset, peaking at 3 weeks, followed by a gradual decline to the baseline levels seen in a seroprevalence cohort post-pandemic. The magnitude of the influenza-specific CD8 T cell memory response at one year post-pandemic was similar in cases and controls as well as in vaccinated and unvaccinated donors, suggesting that any T cell boosting from infection was transient. Pandemic H1-specific antibodies were only detectable in approximately half of vaccinated donors. However, those who were vaccinated within a few months following infection had the highest persisting antibody titers, suggesting that vaccination shortly after influenza infection can boost or sustain antibody levels. For the most part the circulating influenza-specific T cell and serum antibody levels in the population at one year post-pandemic were not different between cases and controls, suggesting that natural infection does not lead to higher long term T cell and antibody responses in donors with pre-existing immunity to influenza. However, based on the responses of one longitudinal donor, it is possible for a small population of pre-existing cross-reactive memory CD8 T cells to expand rapidly following infection and this response may aid in viral clearance and contribute to a lessening of disease severity

    Melanoma: A model for testing new agents in combination therapies

    Get PDF
    Treatment for both early and advanced melanoma has changed little since the introduction of interferon and IL-2 in the early 1990s. Recent data from trials testing targeted agents or immune modulators suggest the promise of new strategies to treat patients with advanced melanoma. These include a new generation of B-RAF inhibitors with greater selectivity for the mutant protein, c-Kit inhibitors, anti-angiogenesis agents, the immune modulators anti-CTLA4, anti-PD-1, and anti-CD40, and adoptive cellular therapies. The high success rate of mutant B-RAF and c-Kit inhibitors relies on the selection of patients with corresponding mutations. However, although response rates with small molecule inhibitors are high, most are not durable. Moreover, for a large subset of patients, reliable predictive biomarkers especially for immunologic modulators have not yet been identified. Progress may also depend on identifying additional molecular targets, which in turn depends upon a better understanding of the mechanisms leading to response or resistance. More challenging but equally important will be understanding how to optimize the treatment of individual patients using these active agents sequentially or in combination with each other, with other experimental treatment, or with traditional anticancer modalities such as chemotherapy, radiation, or surgery. Compared to the standard approach of developing new single agents for licensing in advanced disease, the identification and validation of patient specific and multi-modality treatments will require increased involvement by several stakeholders in designing trials aimed at identifying, even in early stages of drug development, the most effective way to use molecularly guided approaches to treat tumors as they evolve over time

    Protection of Mice against Lethal Challenge with 2009 H1N1 Influenza A Virus by 1918-Like and Classical Swine H1N1 Based Vaccines

    Get PDF
    The recent 2009 pandemic H1N1 virus infection in humans has resulted in nearly 5,000 deaths worldwide. Early epidemiological findings indicated a low level of infection in the older population (>65 years) with the pandemic virus, and a greater susceptibility in people younger than 35 years of age, a phenomenon correlated with the presence of cross-reactive immunity in the older population. It is unclear what virus(es) might be responsible for this apparent cross-protection against the 2009 pandemic H1N1 virus. We describe a mouse lethal challenge model for the 2009 pandemic H1N1 strain, used together with a panel of inactivated H1N1 virus vaccines and hemagglutinin (HA) monoclonal antibodies to dissect the possible humoral antigenic determinants of pre-existing immunity against this virus in the human population. By hemagglutinination inhibition (HI) assays and vaccination/challenge studies, we demonstrate that the 2009 pandemic H1N1 virus is antigenically similar to human H1N1 viruses that circulated from 1918–1943 and to classical swine H1N1 viruses. Antibodies elicited against 1918-like or classical swine H1N1 vaccines completely protect C57B/6 mice from lethal challenge with the influenza A/Netherlands/602/2009 virus isolate. In contrast, contemporary H1N1 vaccines afforded only partial protection. Passive immunization with cross-reactive monoclonal antibodies (mAbs) raised against either 1918 or A/California/04/2009 HA proteins offered full protection from death. Analysis of mAb antibody escape mutants, generated by selection of 2009 H1N1 virus with these mAbs, indicate that antigenic site Sa is one of the conserved cross-protective epitopes. Our findings in mice agree with serological data showing high prevalence of 2009 H1N1 cross-reactive antibodies only in the older population, indicating that prior infection with 1918-like viruses or vaccination against the 1976 swine H1N1 virus in the USA are likely to provide protection against the 2009 pandemic H1N1 virus. This data provides a mechanistic basis for the protection seen in the older population, and emphasizes a rationale for including vaccination of the younger, naïve population. Our results also support the notion that pigs can act as an animal reservoir where influenza virus HAs become antigenically frozen for long periods of time, facilitating the generation of human pandemic viruses
    • …
    corecore