6 research outputs found

    Rapid separation and identification of beer spoilage bacteria by inertial microfluidics and MALDI-TOF mass spectrometry

    Get PDF
    © 2019 The Royal Society of Chemistry. Matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS), in combination with Biotyper software, is a rapid, high-throughput, and accurate method for the identification of microbes. Microbial outbreaks in a brewery present a major risk for companies as it can lead to cost-intensive recalls and damage to the brand reputation. MALDI-TOF MS has been implemented into a brewery setting for quality control practices and the identification of beer spoilage microorganisms. However, the applicability of this approach is hindered by compatibility issues associated with mixed cultures, requiring the use of time-consuming selective cultivation techniques prior to identification. We propose a novel, low-cost approach based on the combination of inertial microfluidics and secondary flows in a spiral microchannel for high-throughput and efficient separation of yeasts (Saccharomyces pastorianus and Saccharomyces cerevisiae) from beer spoilage microorganisms (Lactobacillus brevis and Pediococcus damnosus). Flow rates were optimised using S. pastorianus and L. brevis, leading to separation of more than 90% of the L. brevis cells from yeast. The microorganisms were then identified to the species level using the MALDI-TOF MS platform using standard sample preparation protocols. This study shows the high-throughput and rapid separation of spoilage microorganisms (0.3-3 μm) from background yeast (5 μm) from beer, subsequent identification using MALDI Biotyper, and the potential applicability of the approach for biological control in the brewing industry

    Balancing sufficiency and impact in reporting standards for mass spectrometry imaging experiments

    Get PDF
    Reproducibility, or a lack thereof, is an increasingly important topic across many research fields. A key aspect of reproducibility is accurate reporting of both experiments and the resulting data. Herein, we propose a reporting guideline for mass spectrometry imaging (MSI). Previous standards have laid out guidelines sufficient to guarantee a certain quality of reporting; however, they set a high bar and as a consequence can be exhaustive and broad, thus limiting uptake. To help address this lack of uptake, we propose a reporting supplement—Minimum Information About a Mass Spectrometry Imaging Experiment (MIAMSIE)—and its abbreviated reporting standard version, MSIcheck. MIAMSIE is intended to improve author-driven reporting. It is intentionally not exhaustive, but is rather designed for extensibility and could therefore eventually become analogous to existing standards that aim to guarantee reporting quality. Conversely, its abbreviated form MSIcheck is intended as a diagnostic tool focused on key aspects in MSI reporting. We discuss how existing standards influenced MIAMSIE/MSIcheck and how these new approaches could positively impact reporting quality, followed by test implementation of both standards to demonstrate their use. For MIAMSIE, we report on author reviews of four articles and a dataset. For MSIcheck, we show a snapshot review of a one-month subset of the MSI literature that indicated issues with data provision and the reporting of both data analysis steps and calibration settings for MS systems. Although our contribution is MSI specific, we believe the underlying approach could be considered as a general strategy for improving scientific reporting
    corecore