23 research outputs found

    Evidence for an ependymoma tumour suppressor gene in chromosome region 22pter–22q11.2

    Get PDF
    Ependymomas are glial tumours of the brain and spinal cord. The most frequent genetic change in sporadic ependymoma is monosomy 22, suggesting the presence of an ependymoma tumour suppressor gene on that chromosome. Clustering of ependymomas has been reported to occur in some families. From an earlier study in a family in which four cousins developed an ependymoma, we concluded that an ependymoma-susceptibility gene, which is not the NF2 gene in 22q12, might be located on chromosome 22. To localize that gene, we performed a segregation analysis with chromosome 22 markers in this family. This analysis revealed that the susceptibility gene may be located proximal to marker D22S941 in 22pter–22q11.2. Comparative genomic hybridization showed that monosomy 22 was the sole detectable genetic aberration in the tumour of one of the patients. Loss of heterozygosity studies in that tumour revealed that, in accordance to Knudson’s two-hit theory of tumorigenesis, the lost chromosome 22 originated from the parent presumed to have contributed the wild-type allele of the susceptibility gene. Thus, our segregation and tumour studies collectively indicate that an ependymoma tumour suppressor gene may be present in region 22pter–22q11.2. © 1999 Cancer Research Campaig

    A Drosophila Model for EGFR-Ras and PI3K-Dependent Human Glioma

    Get PDF
    Gliomas, the most common malignant tumors of the nervous system, frequently harbor mutations that activate the epidermal growth factor receptor (EGFR) and phosphatidylinositol-3 kinase (PI3K) signaling pathways. To investigate the genetic basis of this disease, we developed a glioma model in Drosophila. We found that constitutive coactivation of EGFR-Ras and PI3K pathways in Drosophila glia and glial precursors gives rise to neoplastic, invasive glial cells that create transplantable tumor-like growths, mimicking human glioma. Our model represents a robust organotypic and cell-type-specific Drosophila cancer model in which malignant cells are created by mutations in signature genes and pathways thought to be driving forces in a homologous human cancer. Genetic analyses demonstrated that EGFR and PI3K initiate malignant neoplastic transformation via a combinatorial genetic network composed primarily of other pathways commonly mutated or activated in human glioma, including the Tor, Myc, G1 Cyclins-Cdks, and Rb-E2F pathways. This network acts synergistically to coordinately stimulate cell cycle entry and progression, protein translation, and inappropriate cellular growth and migration. In particular, we found that the fly orthologs of CyclinE, Cdc25, and Myc are key rate-limiting genes required for glial neoplasia. Moreover, orthologs of Sin1, Rictor, and Cdk4 are genes required only for abnormal neoplastic glial proliferation but not for glial development. These and other genes within this network may represent important therapeutic targets in human glioma

    Combination of probenecid-sulphadoxine-pyrimethamine for intermittent preventive treatment in pregnancy

    Get PDF
    The antifolate sulphadoxine-pyrimethamine (SP) has been used in the intermittent prevention of malaria in pregnancy (IPTp). SP is an ideal choice for IPTp, however, as resistance of Plasmodium falciparum to SP increases, data are accumulating that SP may no longer provide benefit in areas of high-level resistance. Probenecid was initially used as an adjunctive therapy to increase the blood concentration of penicillin; it has since been used to augment concentrations of other drugs, including antifolates. The addition of probenecid has been shown to increase the treatment efficacy of SP against malaria, suggesting that the combination of probenecid plus SP may prolong the useful lifespan of SP as an effective agent for IPTp. Here, the literature on the pharmacokinetics, adverse reactions, interactions and available data on the use of these drugs in pregnancy is reviewed, and the possible utility of an SP-probenecid combination is discussed. This article concludes by calling for further research into this potentially useful combination
    corecore