54 research outputs found

    Resveratrol Acts Not through Anti-Aggregative Pathways but Mainly via Its Scavenging Properties against Aβ and Aβ-Metal Complexes Toxicity

    Get PDF
    It has been recently suggested that resveratrol can be effective in slowing down Alzheimer's disease (AD) development. As reported in many biochemical studies, resveratrol seems to exert its neuro-protective role through inhibition of β-amyloid aggregation (Aβ), by scavenging oxidants and exerting anti-inflammatory activities. In this paper, we demonstrate that resveratrol is cytoprotective in human neuroblastoma cells exposed to Aβ and or to Aβ-metal complex. Our findings suggest that resveratrol acts not through anti-aggregative pathways but mainly via its scavenging properties

    Effects of an adapted physical activity program in a group of elderly subjects with flexed posture: clinical and instrumental assessment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Flexed posture commonly increases with age and is related to musculoskeletal impairment and reduced physical performance. The purpose of this clinical study was to systematically compare the effects of a physical activity program that specifically address the flexed posture that marks a certain percentage of elderly individuals with a non specific exercise program for 3 months.</p> <p>Methods</p> <p>Participants were randomly divided into two groups: one followed an Adapted Physical Activity program for flexed posture and the other one completed a non-specific physical activity protocol for the elderly. A multidimensional clinical assessment was performed at baseline and at 3 months including anthropometric data, clinical profile, measures of musculoskeletal impairment and disability. The instrumental assessment of posture was realized using a stereophotogrammetric system and a specific biomechanical model designed to describe the reciprocal position of the body segments on the sagittal plane in a upright posture.</p> <p>Results</p> <p>The Adapted Physical Activity program determined a significant improvement in several key parameters of the multidimensional assessment in comparison to the non-specific protocol: decreased occiput-to-wall distance, greater lower limb range of motion, better flexibility of pectoralis, hamstrings and hip flexor muscles, increased spine extensor muscles strength. Stereophotogrammetric analysis confirmed a reduced protrusion of the head and revealed a reduction in compensative postural adaptations to flexed posture characterized by knee flexion and ankle dorsiflexion in the participants of the specific program.</p> <p>Conclusion</p> <p>The Adapted Physical Activity program for flexed posture significantly improved postural alignment and musculoskeletal impairment of the elderly. The stereophotogrammetric evaluation of posture was useful to measure the global postural alignment and especially to analyse the possible compensatory strategies at lower limbs in flexed posture.</p

    Improving genetic prediction by leveraging genetic correlations among human diseases and traits

    Get PDF
    Genomic prediction has the potential to contribute to precision medicine. However, to date, the utility of such predictors is limited due to low accuracy for most traits. Here theory and simulation study are used to demonstrate that widespread pleiotropy among phenotypes can be utilised to improve genomic risk prediction. We show how a genetic predictor can be created as a weighted index that combines published genome-wide association study (GWAS) summary statistics across many different traits. We apply this framework to predict risk of schizophrenia and bipolar disorder in the Psychiatric Genomics consortium data, finding substantial heterogeneity in prediction accuracy increases across cohorts. For six additional phenotypes in the UK Biobank data, we find increases in prediction accuracy ranging from 0.7% for height to 47% for type 2 diabetes, when using a multi-trait predictor that combines published summary statistics from multiple traits, as compared to a predictor based only on one trait

    Interactions of protein complexes on supercoiled DNA: The mechanism of selective synapsis by Tn3 resolvase

    No full text
    "Looping" interactions of distant sites on DNA molecules, mediated by DNA-binding proteins, feature in many regulated genetic processes. We used plasmids containing up to six res recombination sites for Tn3 resolvase to analyse looping interactions (synapsis) in this system. We observed that in plasmids with four or more res sites, certain pairs of sites recombine faster than others. The relative rates of recombination depend on the number, relative orientation, and arrangement of the sites. To account for the differences in rate, we propose that pairing interactions between resolvase-bound res sites are in a state of rapid flux, leading to configurations in which the maximum number of sites within each supercoiled substrate molecule are synapsed in a topologically simple arrangement. Recombination rates reflect the steady state concentrations of these synapse configurations. Our results are at variance with models for selective synapsis that rely on ordered motions within supercoiled DNA, "slithering" or "tracking", but are compatible with models that call for reversible synapsis of pairs of sites by random collision, followed by formation of an interwound productive synapse
    • …
    corecore