136 research outputs found

    History of clinical transplantation

    Get PDF
    The emergence of transplantation has seen the development of increasingly potent immunosuppressive agents, progressively better methods of tissue and organ preservation, refinements in histocompatibility matching, and numerous innovations is surgical techniques. Such efforts in combination ultimately made it possible to successfully engraft all of the organs and bone marrow cells in humans. At a more fundamental level, however, the transplantation enterprise hinged on two seminal turning points. The first was the recognition by Billingham, Brent, and Medawar in 1953 that it was possible to induce chimerism-associated neonatal tolerance deliberately. This discovery escalated over the next 15 years to the first successful bone marrow transplantations in humans in 1968. The second turning point was the demonstration during the early 1960s that canine and human organ allografts could self-induce tolerance with the aid of immunosuppression. By the end of 1962, however, it had been incorrectly concluded that turning points one and two involved different immune mechanisms. The error was not corrected until well into the 1990s. In this historical account, the vast literature that sprang up during the intervening 30 years has been summarized. Although admirably documenting empiric progress in clinical transplantation, its failure to explain organ allograft acceptance predestined organ recipients to lifetime immunosuppression and precluded fundamental changes in the treatment policies. After it was discovered in 1992 that long-surviving organ transplant recipient had persistent microchimerism, it was possible to see the mechanistic commonality of organ and bone marrow transplantation. A clarifying central principle of immunology could then be synthesized with which to guide efforts to induce tolerance systematically to human tissues and perhaps ultimately to xenografts

    Anti-HER-2 DNA vaccine protects Syrian hamsters against squamous cell carcinomas

    Get PDF
    This paper illustrates the efficacy of DNA vaccination through electroporation in the prevention of oral transplantable carcinoma in Syrian hamsters. At 21 and 7 days before tumour challenge, 19 hamsters were vaccinated with plasmids coding for the extracellular and transmembrane domains of rat HER-2 receptor (EC-TM plasmids), whereas 19 control hamsters were injected intramuscularly with the empty plasmid. Immediately following plasmid injection, hamsters of both groups received two square-wave 25 ms, 375 V cm−1 electric pulses via two electrodes placed on the skin of the injection area. At day 0, all hamsters were challenged in the submucosa of the right cheek pouch with HER-2-positive HCPC I cells established in vitro from an 7,12-dimethylbenz[a]anthracene-induced oral carcinoma. This challenge gave rise to HER-2-positive buccal neoplastic lesions in 14 controls (73.37%), compared with only seven (36.8%, P<0.0027) vaccinated hamsters. In addition, the vaccinated hamsters displayed both a stronger proliferative and cytotoxic response than the controls and a significant anti-HER-2 antibody response. Most of the hamsters that rejected the challenge displayed the highest antibody titres. These findings suggest that DNA vaccination may have a future in the prevention of HER-2-positive human oral cancer

    Skin Regeneration in Adult Axolotls: A Blueprint for Scar-Free Healing in Vertebrates

    Get PDF
    While considerable progress has been made towards understanding the complex processes and pathways that regulate human wound healing, regenerative medicine has been unable to develop therapies that coax the natural wound environment to heal scar-free. The inability to induce perfect skin regeneration stems partly from our limited understanding of how scar-free healing occurs in a natural setting. Here we have investigated the wound repair process in adult axolotls and demonstrate that they are capable of perfectly repairing full thickness excisional wounds made on the flank. In the context of mammalian wound repair, our findings reveal a substantial reduction in hemostasis, reduced neutrophil infiltration and a relatively long delay in production of new extracellular matrix (ECM) during scar-free healing. Additionally, we test the hypothesis that metamorphosis leads to scarring and instead show that terrestrial axolotls also heal scar-free, albeit at a slower rate. Analysis of newly forming dermal ECM suggests that low levels of fibronectin and high levels of tenascin-C promote regeneration in lieu of scarring. Lastly, a genetic analysis during wound healing comparing epidermis between aquatic and terrestrial axolotls suggests that matrix metalloproteinases may regulate the fibrotic response. Our findings outline a blueprint to understand the cellular and molecular mechanisms coordinating scar-free healing that will be useful towards elucidating new regenerative therapies targeting fibrosis and wound repair

    A History of Clinical Transplantation

    Get PDF
    • …
    corecore