24 research outputs found

    Sphingosine Kinase-1 Is Required for Toll Mediated β-Defensin 2 Induction in Human Oral Keratinocytes

    Get PDF
    Host defense against invading pathogens is triggered by various receptors including toll-like receptors (TLRs). Activation of TLRs is a pivotal step in the initiation of innate, inflammatory, and antimicrobial defense mechanisms. Human beta-defensin 2 (HBD-2) is a cationic antimicrobial peptide secreted upon gram-negative bacterial perturbation in many cells. Stimulation of various TLRs has been shown to induce HBD-2 in oral keratinocytes, yet the underlying cellular mechanisms of this induction are poorly understood.Here we demonstrate that HBD-2 induction is mediated by the Sphingosine kinase-1 (Sphk-1) and augmented by the inhibition of Glycogen Synthase Kinase-3beta (GSK-3beta) via the Phosphoinositide 3-kinase (PI3K) dependent pathway. HBD-2 secretion was dose dependently inhibited by a pharmacological inhibitor of Sphk-1. Interestingly, inhibition of GSK-3beta by SB 216763 or by RNA interference, augmented HBD-2 induction. Overexpression of Sphk-1 with concomitant inhibition of GSK-3beta enhanced the induction of beta-defensin-2 in oral keratinocytes. Ectopic expression of constitutively active GSK-3beta (S9A) abrogated HBD-2 whereas kinase inactive GSK-3beta (R85A) induced higher amounts of HBD-2.These data implicate Sphk-1 in HBD-2 regulation in oral keratinocytes which also involves the activation of PI3K, AKT, GSK-3beta and ERK 1/2. Thus we reveal the intricate relationship and pathways of toll-signaling molecules regulating HBD-2 which may have therapeutic potential

    miR-195 inhibits macrophages pro-inflammatory profile and impacts the crosstalk with smooth muscle cells.

    No full text
    Macrophages are a main component of atherosclerotic plaques. Recent studies suggest that pro-inflammatory M1 macrophages are pro-atherogenic while M2 macrophages promote plaque stability. Moreover, toll-like receptor signalling pathways are implicated in atherosclerotic plaque formation, evolution and regression. We propose microRNAs as key regulators of these processes. In this context, our goal is to promote inflammation resolution using miR-195 to reduce M1-like macrophage polarization and to evaluate the molecular mechanisms underlying such effect, as well as to explore the functional consequences for smooth muscle cell recruitment. Human primary macrophages were differentiated from peripheral blood monocytes and stimulated with LPS or IL-10 to promote M1 or M2c polarization, respectively. miR-195 levels were upregulated in M2c macrophages compared with M1 macrophages. In THP-1 macrophages stimulated with LPS and IFN-γ, results show that TLR2 levels were reduced by miR-195 overexpression compared with scrambled control. In addition, phosphorylated forms of p54 JNK, p46 JNK and p38 MAPK were decreased by miR-195 in macrophages following M1 stimulation. Moreover, miR-195 significantly decreased levels of IL-1β, IL-6 and TNF-α pro-inflammatory cytokines in the supernatants of M1-stimulated macrophage cultures. At the functional level, results from smooth muscle cell recruitment and migration models showed that miR-195 impairs the capacity of M1 macrophages to promote smooth muscle cells migration. In conclusion, miR-195 is involved in macrophage polarization and inhibits TLR2 inflammatory pathway mediators. Moreover, miR-195 impairs the effect of macrophages on smooth muscle cells recruitment capacity and migration profile. Thus, miR-195 might be used as a new potential tool to promote inflammation resolution in cardiovascular research
    corecore