1,842 research outputs found

    The Large N 't Hooft Limit of Kazama-Suzuki Model

    Full text link
    We consider N=2 Kazama-Suzuki model on CP^N=SU(N+1)/SU(N)xU(1). It is known that the N=2 current algebra for the supersymmetric WZW model, at level k, is a nonlinear algebra. The N=2 W_3 algebra corresponding to N=2 was recovered from the generalized GKO coset construction previously. For N=4, we construct one of the higher spin currents, in N=2 W_5 algebra, with spins (2, 5/2, 5/2, 3). The self-coupling constant in the operator product expansion of this current and itself depends on N as well as k explicitly. We also observe a new higher spin primary current of spins (3, 7/2, 7/2, 4). From the behaviors of N=2, 4 cases, we expect the operator product expansion of the lowest higher spin current and itself in N=2 W_{N+1} algebra. By taking the large (N, k) limit on the various operator product expansions in components, we reproduce, at the linear order, the corresponding operator product expansions in N=2 classical W_{\infty}^{cl}[\lambda] algebra which is the asymptotic symmetry of the higher spin AdS_3 supergravity found recently.Comment: 44 pages; the two typos in the first paragraph of page 23 corrected and to appear in JHE

    The Operator Product Expansion of the Lowest Higher Spin Current at Finite N

    Full text link
    For the N=2 Kazama-Suzuki(KS) model on CP^3, the lowest higher spin current with spins (2, 5/2, 5/2,3) is obtained from the generalized GKO coset construction. By computing the operator product expansion of this current and itself, the next higher spin current with spins (3, 7/2, 7/2, 4) is also derived. This is a realization of the N=2 W_{N+1} algebra with N=3 in the supersymmetric WZW model. By incorporating the self-coupling constant of lowest higher spin current which is known for the general (N,k), we present the complete nonlinear operator product expansion of the lowest higher spin current with spins (2, 5/2, 5/2, 3) in the N=2 KS model on CP^N space. This should coincide with the asymptotic symmetry of the higher spin AdS_3 supergravity at the quantum level. The large (N,k) 't Hooft limit and the corresponding classical nonlinear algebra are also discussed.Comment: 62 pages; the footnotes added, some redundant appendices removed, the presentations in the whole paper improved and to appear in JHE

    The Primary Spin-4 Casimir Operators in the Holographic SO(N) Coset Minimal Models

    Full text link
    Starting from SO(N) current algebra, we construct two lowest primary higher spin-4 Casimir operators which are quartic in spin-1 fields. For N is odd, one of them corresponds to the current in the WB_{\frac{N-1}{2}} minimal model. For N is even, the other corresponds to the current in the WD_{\frac{N}{2}} minimal model. These primary higher spin currents, the generators of wedge subalgebra, are obtained from the operator product expansion of fermionic (or bosonic) primary spin-N/2 field with itself in each minimal model respectively. We obtain, indirectly, the three-point functions with two real scalars, in the large N 't Hooft limit, for all values of the 't Hooft coupling which should be dual to the three-point functions in the higher spin AdS_3 gravity with matter.Comment: 65 pages; present the main results only and to appear in JHEP where one can see the Appendi

    On the coset duals of extended higher spin theories

    Full text link
    We study the holographic duality between the M x M matrix extension of Vasiliev higher spin theories on AdS3 and the large N limit of SU(N+M)/SU(N) x U(1) type cosets. We present a simplified proof for the agreement of the spectra and clarify the relation between this duality and the version in which the cosets are replaced by Kazama-Suzuki models of Grassmannian type.Comment: 27 pages, 1 tabl

    Higher spin AdS_3 holography with extended supersymmetry

    Get PDF
    We propose a holographic duality between a higher spin AdS_3 gravity with so(p) extended supersymmetry and a large N limit of a 2-dimensional Grassmannian-like model with a specific critical level k=N and a non-diagonal modular invariant. As evidence, we show the match of one-loop partition functions. Moreover, we construct symmetry generators of the coset model for low spins which are dual to gauge fields in the supergravity. Further, we discuss a possible relation to superstring theory by noticing an N=3 supersymmetry of critical level model at finite k,N. In particular, we examine BPS states and marginal deformations. Inspired by the supergravity side, we also propose and test another large N CFT dual obtained as a Z_2 automorphism truncation of a similar coset model, but at a non-critical level.Comment: 44 pages, published versio

    The Coset Spin-4 Casimir Operator and Its Three-Point Functions with Scalars

    Full text link
    We find the GKO coset construction of the dimension 4 Casimir operator that contains the quartic WZW currents contracted with completely symmetric SU(N) invariant tensors of ranks 4, 3, and 2. The requirements, that the operator product expansion with the diagonal current is regular and it should be primary under the coset Virasoro generator of dimension 2, fix all the coefficients in spin-4 current, up to two unknown coefficients. The operator product expansion of coset primary spin-3 field with itself fixes them completely. We compute the three-point functions with scalars for all values of the 't Hooft coupling in the large N limit. At fixed 't Hooft coupling, these three-point functions are dual to that found by Chang and Yin recently in the undeformed AdS_3 bulk theory (higher spin gravity with matter).Comment: 65 pages; the ambiguity for the two coefficient functions is clarified and the abstract, the introduction, the subsection 3.4 and the conclusion are improved and to appear in JHE

    Triality in Minimal Model Holography

    Full text link
    The non-linear W_{\infty}[\mu] symmetry algebra underlies the duality between the W_N minimal model CFTs and the hs[\mu] higher spin theory on AdS_3. It is shown how the structure of this symmetry algebra at the quantum level, i.e. for finite central charge, can be determined completely. The resulting algebra exhibits an exact equivalence (a`triality') between three (generically) distinct values of the parameter \mu. This explains, among other things, the agreement of symmetries between the W_N minimal models and the bulk higher spin theory. We also study the consequences of this triality for some of the simplest W_{\infty}[\mu] representations, thereby clarifying the analytic continuation between the`light states' of the minimal models and conical defect solutions in the bulk. These considerations also lead us to propose that one of the two scalar fields in the bulk actually has a non-perturbative origin.Comment: 29 pages; v2. Typos correcte

    Limits of minimal models and continuous orbifolds

    Get PDF
    The lambda=0 't Hooft limit of the 2d W_N minimal models is shown to be equivalent to the singlet sector of a free boson theory, thus paralleling exactly the structure of the free theory in the Klebanov-Polyakov proposal. In 2d, the singlet sector does not describe a consistent theory by itself since the corresponding partition function is not modular invariant. However, it can be interpreted as the untwisted sector of a continuous orbifold, and this point of view suggests that it can be made consistent by adding in the appropriate twisted sectors. We show that these twisted sectors account for the `light states' that were not included in the original 't Hooft limit. We also show that, for the Virasoro minimal models (N=2), the twisted sector of our orbifold agrees precisely with the limit theory of Runkel & Watts. In particular, this implies that our construction satisfies crossing symmetry.Comment: 33 pages; v2: minor improvements and references added, published versio

    N=1 extension of minimal model holography

    Full text link
    The CFT dual of the higher spin theory with minimal N = 1 spectrum is determined. Unlike previous examples of minimal model holography, there is no free parameter beyond the central charge, and the CFT can be described in terms of a non-diagonal modular invariant of the bosonic theory at the special value of the 't Hooft parameter lambda=1/2. As evidence in favour of the duality we show that the symmetry algebras as well as the partition functions agree between the two descriptions.Comment: 28 page
    • …
    corecore