416 research outputs found

    Solving kk-means on High-dimensional Big Data

    Full text link
    In recent years, there have been major efforts to develop data stream algorithms that process inputs in one pass over the data with little memory requirement. For the kk-means problem, this has led to the development of several (1+ε)(1+\varepsilon)-approximations (under the assumption that kk is a constant), but also to the design of algorithms that are extremely fast in practice and compute solutions of high accuracy. However, when not only the length of the stream is high but also the dimensionality of the input points, then current methods reach their limits. We propose two algorithms, piecy and piecy-mr that are based on the recently developed data stream algorithm BICO that can process high dimensional data in one pass and output a solution of high quality. While piecy is suited for high dimensional data with a medium number of points, piecy-mr is meant for high dimensional data that comes in a very long stream. We provide an extensive experimental study to evaluate piecy and piecy-mr that shows the strength of the new algorithms.Comment: 23 pages, 9 figures, published at the 14th International Symposium on Experimental Algorithms - SEA 201

    Axion-mediated dark matter and Higgs diphoton signal

    Get PDF
    We consider axion-mediated dark matter models motivated by Fermi gamma ray line at 130 GeV, where anomaly interactions of an axion-like scalar mediate a singlet Dirac fermion dark matter (DM) to electroweak gauge bosons. In these models, extra vector-like leptons generate anomaly interactions for the axion and can also couple to the SM Higgs boson to modify the Higgs-to-diphoton rate. We can distinguish models by the branching fraction of the DM annihilation into a photon pair, favoring the model with a triplet fermion. From the condition that the lighter charged extra lepton must be heavier than dark matter for no tree-level DM annihilations, we also show that the ratio of Higgs-to-diphoton rate to the SM value is constrained by vacuum stability to 1.4(1.5) for the cutoff scale of 10(1) TeV.Comment: 29 pages, 6 figures, references adde

    New quick method for isolating RNA from laser captured cells stained by immunofluorescent immunohistochemistry; RNA suitable for direct use in fluorogenic TaqMan one-step real-time RT-PCR

    Get PDF
    We describe a new approach for reliably isolating one-step real-time quantitative RT-PCR-quality RNA from laser captured cells retrieved from frozen sections previously subjected to immunofluorescent immunohistochemistry (IF-IHC) and subsequently subjected to fluorogenic one-step real-time RT-PCR analysis without the need for costly, time-consuming linear amplification. One cell’s worth of RNA can now be interrogated with confidence. This approach represents an amalgam of technologies already offered commercially by Applied Biosystems, Arcturus and Invitrogen. It is the primary focus of this communication to expose the details and execution of an important new LCM RNA isolation technique, but also provide a detailed account of the IF-IHC procedure preceding RNA isolation, and provide information regarding our approach to fluorogenic one-step real-time RT-PCR in general. Experimental results shown here are meant to supplement the primary aim and are not intended to represent a complete scientific study. It is important to mention, that since LCM-RT-PCR is still far less expensive than micro-array analysis, we feel this approach to isolating RNA from LCM samples will be of continuing use to many researchers with limited budgets in the years ahead

    On the evolutionary origin of aging

    Get PDF
    It is generally believed that the first organisms did not age, and that aging thus evolved at some point in the history of life. When and why this transition occurred is a fundamental question in evolutionary biology. Recent reports of aging in bacteria suggest that aging predates the emergence of eukaryotes and originated in simple unicellular organisms. Here we use simple models to study why such organisms would evolve aging. These models show that the differentiation between an aging parent and a rejuvenated offspring readily evolves as a strategy to cope with damage that accumulates due to vital activities. We use measurements of the age-specific performance of individual bacteria to test the assumptions of the model, and find evidence that they are fulfilled. The mechanism that leads to aging is expected to operate in a wide range of organisms, suggesting that aging evolved early and repeatedly in the history of life. Aging might thus be a more fundamental aspect of cellular organisms than assumed so far

    Interplay between Fermi gamma-ray lines and collider searches

    Get PDF
    We explore the interplay between lines in the gamma-ray spectrum and LHC searches involving missing energy and photons. As an example, we consider a singlet Dirac fermion dark matter with the mediator for Fermi gamma-ray line at 130 GeV. A new chiral or local U(1) symmetry makes weak-scale dark matter natural and provides the axion or Z 0 gauge boson as the mediator connecting between dark matter and electroweak gauge bosons. In these models, the mediator particle can be produced in association with a monophoton at colliders and it produces large missing energy through the decays into a DM pair or ZZ; Z with at least one Z decaying into a neutrino pair. We adopt the monophoton searches with large missing energy at the LHC and impose the bounds on the coupling and mass of the mediator field in the models. We show that the parameter space of the Z 0 mediation model is already strongly constrained by the LHC 8TeV data, whereas a certain region of the parameter space away from the resonance in axion-like mediator models are bounded. We foresee the monophoton bounds on the Z 0 and axion mediation models at the LHC 14 TeV

    A Shigella boydii bacteriophage which resembles Salmonella phage ViI

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lytic bacteriophages have been applied successfully to control the growth of various foodborne pathogens. Sequencing of their genomes is considered as an important preliminary step to ensure their safety prior to food applications.</p> <p>Results</p> <p>The lytic bacteriophage, ΦSboM-AG3, targets the important foodborne pathogen, <it>Shigella</it>. It is morphologically similar to phage ViI of <it>Salmonella enterica </it>serovar Typhi and a series of phages of <it>Acinetobacter calcoaceticus </it>and <it>Rhizobium meliloti</it>. The complete genome of ΦSboM-AG3 was determined to be 158 kb and was terminally redundant and circularly permuted. Two hundred and sixteen open reading frames (ORFs) were identified and annotated, most of which displayed homology to proteins of <it>Salmonella </it>phage ViI. The genome also included four genes specifying tRNAs.</p> <p>Conclusions</p> <p>This is the first time that a Vi-specific phage for <it>Shigella </it>has been described. There is no evidence for the presence of virulence and lysogeny-associated genes. In conclusion, the genome analysis of ΦSboM-AG3 indicates that this phage can be safely used for biocontrol purposes.</p

    Cosmic rays and molecular clouds

    Full text link
    This paper deals with the cosmic-ray penetration into molecular clouds and with the related gamma--ray emission. High energy cosmic rays interact with the dense gas and produce neutral pions which in turn decay into two gamma rays. This makes molecular clouds potential sources of gamma rays, especially if they are located in the vicinity of a powerful accelerator that injects cosmic rays in the interstellar medium. The amplitude and duration in time of the cosmic--ray overdensity around a given source depend on how quickly cosmic rays diffuse in the turbulent galactic magnetic field. For these reasons, gamma-ray observations of molecular clouds can be used both to locate the sources of cosmic rays and to constrain the properties of cosmic-ray diffusion in the Galaxy.Comment: To appear in the proceedings of the San Cugat Forum on Astrophysics 2012, 27 pages, 10 figure

    Negative phenotypic and genetic associations between copulation duration and longevity in male seed beetles

    Get PDF
    Reproduction can be costly and is predicted to trade-off against other characters. However, while these trade-offs are well documented for females, there has been less focus on aspects of male reproduction. Furthermore, those studies that have looked at males typically only investigate phenotypic associations, with the underlying genetics often ignored. Here, we report on phenotypic and genetic trade-offs in male reproductive effort in the seed beetle, Callosobruchus maculatus. We find that the duration of a male's first copulation is negatively associated with subsequent male survival, phenotypically and genetically. Our results are consistent with life-history theory and suggest that like females, males trade-off reproductive effort against longevity

    Addressing fluorogenic real-time qPCR inhibition using the novel custom Excel file system 'FocusField2-6GallupqPCRSet-upTool-001' to attain consistently high fidelity qPCR reactions

    Get PDF
    The purpose of this manuscript is to discuss fluorogenic real-time quantitative polymerase chain reaction (qPCR) inhibition and to introduce/define a novel Microsoft Excel-based file system which provides a way to detect and avoid inhibition, and enables investigators to consistently design dynamically-sound, truly LOG-linear qPCR reactions very quickly. The qPCR problems this invention solves are universal to all qPCR reactions, and it performs all necessary qPCR set-up calculations in about 52 seconds (using a pentium 4 processor) for up to seven qPCR targets and seventy-two samples at a time – calculations that commonly take capable investigators days to finish. We have named this custom Excel-based file system "FocusField2-6GallupqPCRSet-upTool-001" (FF2-6-001 qPCR set-up tool), and are in the process of transforming it into professional qPCR set-up software to be made available in 2007. The current prototype is already fully functional

    Bcl-2 protein family: Implications in vascular apoptosis and atherosclerosis

    Get PDF
    Apoptosis has been recognized as a central component in the pathogenesis of atherosclerosis, in addition to the other human pathologies such as cancer and diabetes. The pathophysiology of atherosclerosis is complex, involving both apoptosis and proliferation at different phases of its progression. Oxidative modification of lipids and inflammation differentially regulate the apoptotic and proliferative responses of vascular cells during progression of the atherosclerotic lesion. Bcl-2 proteins act as the major regulators of extrinsic and intrinsic apoptosis signalling pathways and more recently it has become evident that they mediate the apoptotic response of vascular cells in response to oxidation and inflammation either in a provocative or an inhibitory mode of action. Here we address Bcl-2 proteins as major therapeutic targets for the treatment of atherosclerosis and underscore the need for the novel preventive and therapeutic interventions against atherosclerosis, which should be designed in the light of molecular mechanisms regulating apoptosis of vascular cells in atherosclerotic lesions
    corecore