7 research outputs found

    Coffee bean extracts rich and poor in kahweol both give rise to elevation of liver enzymes in healthy volunteers

    Get PDF
    BACKGROUND: Coffee oil potently raises serum cholesterol levels in humans. The diterpenes cafestol and kahweol are responsible for this elevation. Coffee oil also causes elevation of liver enzyme levels in serum. It has been suggested that cafestol is mainly responsible for the effect on serum cholesterol levels and that kahweol is mainly responsible for the effect on liver enzyme levels. The objective of this study was to investigate whether coffee oil that only contains a minute amount of kahweol indeed does not cause elevation of liver enzyme levels. METHODS: The response of serum alanine aminotransferase (ALAT) and aspartate aminotransferase (ASAT) to Robusta coffee oil (62 mg/day cafestol, 1.6 mg/day kahweol) was measured in 18 healthy volunteers. RESULTS: After nine days one subject was taken off Robusta oil treatment due to an ALAT level of 3.6 times the upper limit of normal (ULN). Another two subjects stopped treatment due to other reasons. After 16 days another two subjects were taken off Robusta oil treatment. One of those subjects had levels of 5.8 ULN for ALAT and 2.0 ULN for ASAT; the other subject had an ALAT level of 12.4 ULN and an ASAT level of 4.7 ULN. It was then decided to terminate the study. The median response of subjects to Robusta oil after 16 days was 0.27 ULN (n = 15, 25(th),75(th )percentile: 0.09;0.53) for ALAT and 0.06 ULN (25(th),75(th )percentile -0.06;0.22) for ASAT. CONCLUSIONS: We conclude that the effect on liver enzyme levels of coffee oil containing hardly any kahweol is similar to that of coffee oil containing high amounts of kahweol. Therefore it is unlikely that kahweol is the component of coffee oil that is responsible for the effect. Furthermore, we conclude that otherwise unexplained elevation of liver enzyme levels observed in patients might be caused by a switch from consumption of filtered coffee to unfiltered coffee

    Reproducibility of the serum lipid response to coffee oil in healthy volunteers

    Get PDF
    BACKGROUND: Humans and animals show a certain consistency in the response of their serum lipids to fat-modified diets. This may indicate a genetic basis underlying this response. Coffee oil might be used as a model substance to investigate which genes determine differences in the serum lipid response. Before carrying out such studies our objective was to investigate to what extent the effect of coffee oil on serum lipid concentrations is reproducible within subjects. METHODS: The serum lipid response of 32 healthy volunteers was measured twice in separate five-week periods in which coffee oil was administered (69 mg cafestol / day). RESULTS: Total cholesterol levels increased by 24% in period 1 (range:0;52%) and 18% in period 2 (1;48%), LDL cholesterol by 29 % (-9;71%) and 20% (-12;57%), triglycerides by 66% (16;175%) and 58% (-13;202%), and HDL cholesterol did not change significantly: The range of the HDL response was -19;25% in period 1 and -20;33% in period 2. The correlation between the two responses was 0.20 (95%CI -0.16, 0.51) for total cholesterol, 0.16 (95%CI -0.20, 0.48) for LDL, 0.67 (95%CI 0.42, 0.83) for HDL, and 0.77 (95%CI 0.56, 0.88) for triglycerides. CONCLUSIONS: The responses of total and LDL cholesterol to coffee oil were poorly reproducible within subjects. The responses of HDL and triglycerides, however, appeared to be highly reproducible. Therefore, investigating the genetic sources of the variation in the serum-lipid response to coffee oil is more promising for HDL and triglycerides

    Cholesterol-raising diterpenes in types of coffee commonly consumed in Singapore, Indonesia and India and associations with blood lipids: A survey and cross sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To measure the content of cholesterol-raising diterpenes in coffee sold at the retailer level in Singapore, Indonesia and India and to determine the relationship of coffee consumption with lipid levels in a population-based study in Singapore.</p> <p>Methods</p> <p>Survey and cross-sectional study in local coffee shops in Singapore, Indonesia and India to measure the diterpene content in coffee, and a population-based study in Singapore to examine the relationship of coffee consumption and blood lipid levels. Interviews and coffee samples (n = 27) were collected from coffee shops in Singapore, Indonesia and India. In addition, 3000 men and women who were Chinese, Malay, and Indian residents of Singapore participated in a cross-sectional study.</p> <p>Results and Discussion</p> <p>The traditional 'sock' method of coffee preparation used in Singapore resulted in cafestol concentrations comparable to European paper drip filtered coffee (mean 0.09 ± SD 0.064 mg/cup). This amount would result in negligible predicted increases in serum cholesterol and triglyceride concentrations. Similarly low amounts of cafestol were found in Indian 'filter' coffee that used a metal mesh filter (0.05 ± 0.05 mg/cup). Coffee samples from Indonesia using the 'sock' method (0.85 ± 0.41 mg/cup) or a metal mesh filter (0.98 mg/cup) contained higher amounts of cafestol comparable to espresso coffee. Unfiltered coffee from Indonesia contained an amount of cafestol (4.43 mg/cup) similar to Scandinavian boiled, Turkish and French press coffee with substantial predicted increases in serum cholesterol (0.33 mmol/l) and triglycerides (0.20 mmol/l) concentrations for consumption of 5 cups per day. In the Singaporean population, higher coffee consumption was not substantially associated with serum lipid concentrations after adjustment for potential confounders [LDL-cholesterol: 3.07 (95% confidence interval 2.97-3.18) for <1 cup/week versus 3.12 (2.99-3.26) for ≥ 3 cups/day; p trend 0.12].</p> <p>Conclusions</p> <p>Based on the low levels of diterpenes found in traditionally prepared coffee consumed in Singapore and India, coffee consumption in these countries does not appear to be a risk factor for elevation of serum cholesterol, whereas samples tested from Indonesia showed mixed results depending on the type of preparation method used.</p

    Current evidence for the use of coffee and caffeine to prevent age-related cognitive decline and Alzheimer’s disease

    No full text
    corecore