40 research outputs found

    Continuous non-invasive eye tracking in intensive care

    Get PDF
    Delirium, an acute confusional state, is a common occurrence in Intensive Care Units (ICUs). Patients who develop delirium have globally worse outcomes than those who do not and thus the diagnosis of delirium is of importance. Current diagnostic methods have several limitations leading to the suggestion of eye-tracking for its diagnosis through in-attention. To ascertain the requirements for an eye-tracking system in an adult ICU, measurements were carried out at Chelsea & Westminster Hospital NHS Foundation Trust. Clinical criteria guided empirical requirements of invasiveness and calibration methods while accuracy and precision were measured. A non-invasive system was then developed utilising a patient-facing RGB camera and a scene-facing RGBD camera. The system’s performance was measured in a replicated laboratory environment with healthy volunteers revealing an accuracy and precision that outperforms what is required while simultaneously being non-invasive and calibration-free The system was then deployed as part of CONfuSED, a clinical feasibility study where we report aggregated data from 5 patients as well as the acceptability of the system to bedside nursing staff. To the best of our knowledge, the system is the first eye-tracking systems to be deployed in an ICU for delirium monitoring

    What is the patient looking at? Robust gaze-scene intersection under free-viewing conditions

    Get PDF
    Locating the user’s gaze in the scene, also known as Point of Regard (PoR) estimation, following gaze regression is important for many downstream tasks. Current techniques either require the user to wear and calibrate instruments, require significant pre-processing of the scene information, or place restrictions on user’s head movements.We propose a geometrically inspired algorithm that, despite its simplicity, provides high accuracy and O(J) performance under a variety of challenging situations including sparse depth maps, high noise, and high dynamic parallax between the user and the scene camera. We demonstrate the utility of the proposed algorithm in regressing the PoR from scenes captured in the Intensive Care Unit (ICU) at Chelsea & Westminster Hospital NHS Foundation Trust a

    Increase in COVID-19 inpatient survival following detection of Thromboembolic and Cytokine storm risk from the point of admission to hospital by a near real time Traffic-light System (TraCe-Tic)

    Get PDF
    Introduction Our goal was to evaluate if traffic-light driven personalized care for COVID-19 was associated with improved survival in acute hospital settings. Methods Discharge outcomes were evaluated before and after prospective implementation of a real-time dashboard with feedback to ward-based clinicians. Thromboembolic categories were “medium-risk” (D-dimer >1000 ng/mL or CRP >200 mg/L); “high-risk” (D-dimer >3000 ng/mL or CRP >250 mg/L) or “suspected” (D-dimer >5000 ng/mL). Cytokine storm risk was categorized by ferritin. Results 939/1039 COVID-19 positive patients (median age 69 years, 563/939 (60%) male) completed hospital encounters to death or discharge by 21st May 2020. Thromboembolic flag criteria were reached by 568/939 (60.4%), including 238/275 (86.6%) of the patients who died, and 330/664 (49.7%) of the patients who survived to discharge, p < 0.0001. Cytokine storm flag criteria were reached by 212 (22.5%) of admissions, including 80/275 (29.0%) of the patients who died, and 132/664 (19.9%) of the patients who survived, p < 0.0001. The maximum thromboembolic flag discriminated completed encounter mortality (no flag: 37/371 [9.97%] died; medium-risk: 68/239 [28.5%]; high-risk: 105/205 [51.2%]; and suspected thromboembolism: 65/124 [52.4%], p < 0.0001). Flag criteria were reached by 535 consecutive COVID-19 positive patients whose hospital encounter completed before traffic-light introduction: 173/535 (32.3% [95% confidence intervals 28.0, 36.0]) died. For the 200 consecutive admissions after implementation of real-time traffic light flags, 46/200 (23.0% [95% confidence intervals 17.1–28.9]) died, p = 0.013. Adjusted for age and sex, the probability of death was 0.33 (95% confidence intervals 0.30–0.37) before traffic light implementation, 0.22 (0.17–0.27) after implementation, p < 0.001. In subgroup analyses, older patients, males, and patients with hypertension (p ≤ 0.01), and/or diabetes (p = 0.05) derived the greatest benefit from admission under the traffic light system. Conclusion Personalized early interventions were associated with a 33% reduction in early mortality. We suggest benefit predominantly resulted from early triggers to review/enhance anticoagulation management, without exposing lower-risk patients to potential risks of full anticoagulation therapy

    Fluid challenges in intensive care: the FENICE study A global inception cohort study

    Get PDF
    Fluid challenges (FCs) are one of the most commonly used therapies in critically ill patients and represent the cornerstone of hemodynamic management in intensive care units. There are clear benefits and harms from fluid therapy. Limited data on the indication, type, amount and rate of an FC in critically ill patients exist in the literature. The primary aim was to evaluate how physicians conduct FCs in terms of type, volume, and rate of given fluid; the secondary aim was to evaluate variables used to trigger an FC and to compare the proportion of patients receiving further fluid administration based on the response to the FC.This was an observational study conducted in ICUs around the world. Each participating unit entered a maximum of 20 patients with one FC.2213 patients were enrolled and analyzed in the study. The median [interquartile range] amount of fluid given during an FC was 500 ml (500-1000). The median time was 24 min (40-60 min), and the median rate of FC was 1000 [500-1333] ml/h. The main indication for FC was hypotension in 1211 (59 %, CI 57-61 %). In 43 % (CI 41-45 %) of the cases no hemodynamic variable was used. Static markers of preload were used in 785 of 2213 cases (36 %, CI 34-37 %). Dynamic indices of preload responsiveness were used in 483 of 2213 cases (22 %, CI 20-24 %). No safety variable for the FC was used in 72 % (CI 70-74 %) of the cases. There was no statistically significant difference in the proportion of patients who received further fluids after the FC between those with a positive, with an uncertain or with a negatively judged response.The current practice and evaluation of FC in critically ill patients are highly variable. Prediction of fluid responsiveness is not used routinely, safety limits are rarely used, and information from previous failed FCs is not always taken into account

    Vascular inflammation and endothelial injury in SARS-CoV-2 infection: the overlooked regulatory cascades implicated by the ACE2 gene cluster

    Get PDF
    COVID-19 has presented physicians with an unprecedented number of challenges and mortality. The basic question is why, in contrast to other "respiratory" viruses, SARS-CoV-2 infection can result in such multi-systemic, life-threatening complications and a severe pulmonary vasculopathy. It is widely known that SARS-CoV-2 uses membrane-bound angiotensin-converting enzyme 2 (ACE2) as a receptor, resulting in internalisation of the complex by the host cell. We discuss the evidence that failure to suppress coronaviral replication within 5 days results in sustained downregulation of ACE2 protein expression, and that ACE2 is under negative-feedback regulation. We then expose openly-available experimental repository data that demonstrate the gene for ACE2 lies in a novel cluster of interegulated genes on the X chromosome including PIR encoding pirin (quercetin 2,3-dioxygenase), and VEGFD encoding the predominantly lung-expressed vascular endothelial growth factor D. The five double-elite enhancer/promoters that are known to be operational, and shared read-through lncRNA transcripts, imply that ongoing SARS-CoV-2 infection will reduce host defences to reactive oxygen species, directly generate superoxide O2 - and H2O2 (a "ROS storm"), and impair pulmonary endothelial homeostasis. Published cellular responses to oxidative stress complete the loop to pathophysiology observed in severe COVID-19. Thus for patients who fail to rapidly suppress viral replication, the newly-appreciated ACE2 co-regulated cluster predicts delayed responses that would account for catastrophic deteriorations. We conclude that ACE2 homeostatic drives provide a unified understanding which should help optimise therapeutic approaches during the wait until safe, effective vaccines and antiviral therapies for SARS-CoV-2 are delivered
    corecore