11 research outputs found

    Validation of a method to estimate direct normal irradiance of UVA and PAR bands from global horizontal measurements for cloudless sky conditions in Valencia, Spain, by a measurement campaign

    Full text link
    A method is proposed to provide measurement of direct normal solar irradiance of bands with wavelength ranges (315-400 nm, 400-700 nm) from measurements of global horizontal band irradiance for cloudless sky conditions in Valencia. Global and normal direct irradiance data for every air mass were obtained by applying the SMART2 model to the atmosphere of Valencia. The direct normal to global irradiance ratio was parameterized versus the relative optical air mass. A measurement campaign of global horizontal and diffuse irradiance of UVA and PAR bands was carried out in Valencia, after which, the inferred direct normal irradiance was compared with those provided by the method. The result of the comparison shows that the method is acceptably accurate. The proposed model tends to underestimate the direct normal irradiance of the UVA band by 6%, although for values below 25 W/m2 the model overestimates the direct irradiance by 6%, while for values above 25 W/m2 the model underestimates it by 10%. The other two error estimators used ranging from 11% to 15% are similar in the defined interval measurements in relation to the whole UVA band. Regarding the PAR band, the model overestimates the direct normal irradiance of the PAR band by only 2.2%. With this, the results of the PAR band are more conclusive, as it has been found that for direct normal irradiance values higher than 280 W/m2 the MBE error is almost zero and the other two estimator errors are small, about 5%. © 2010 Springer-Verlag.This work was supported by the Spanish Government through MEC grant MAT2009-14625-C03-03, and is a part of the activities of the Grup d'Optoelectronica i Semiconductors of the Polytechnic University of Valencia. The translation of this paper was funded by the Universidad Politecnica de Valencia, Spain.Serrano Jareño, MA.; Boscá Berga, JV. (2011). Validation of a method to estimate direct normal irradiance of UVA and PAR bands from global horizontal measurements for cloudless sky conditions in Valencia, Spain, by a measurement campaign. Theoretical and Applied Climatology. 103(1):95-101. https://doi.org/10.1007/s00704-010-0284-9S951011031Barth J, Cadet J, Césarini JP, Fitzpatrick TB, McKinlay A, Mutzhas M, Pathak M, Peak M, Sliney D, Urbach F (1999) TC 6-26 report: Standardization of the terms UV-A1, UV-A2 and UV-B, CIE 134-1999 ISBN 3-900-734-94-1Batlles FJ, Olmo FJ, Alados-Arboledas L (1995) On shadowband correction methods for diffuse irradiance measurements. Solar Energy 54(5):105–114Drummond AJ (1956) On the measurement of sky radiation. Arch 602 Meteor Geophys Bioklim B 7:413–436Gueymard C (1995) SMARTS2: a simple model of the atmospheric radiative transfer of sunshine: algorithms and performance assessment. FSEC-PF-270-95, Florida Solar Energy CenterGueymard C (2003) SMARTS2 code, versión 2.9.2. User’s Manual, Solar Consulting Services Bailey CO. Available from http://rredc.nrel.gov/solar/models/SMARTS/smarts_index.htmlGueymard C (2004) The sun’s total and spectral irradiance for solar energy applications and solar radiation models. Solar Energy 76:423–453Häder DP, Lebert M, Marangoni R, Colombetti G (1999) ELDONET-European light dosimeter network hardware and software. J Photochem Photobiol B: Biol 52:51–58Häder DP, Lebert M, Colombetti G, Figueroa F (2001) European light dosimeter network (ELDONET). Helgol Mar Res 55:35–44Iqbal M (1983) An introduction to solar radiation. Academic, TorontoKudish AI, Evseev EG (2008) The assessment of four different correction models applied to the diffuse radiation measured with a shadow ring using global and normal beam radiation measurements for Beer Sheva, Israel. Solar Energy 82(2):144–156LeBaron BA, Michalsky JJ, Perez R (1990) A simple procedure for correcting shadowband data for all sky conditions. Solar Energy 44:249–256Marín Fernández MJ (2007) Estudio de la irradiancia solar ultravioleta y eritemática en la Comunidad Valenciana. Doctoral Thesis University of Valencia (Spain)Perez R, Ineichen P, Seals R, Michalsky JJ, Stewart R (1990) Modelling daylight availability and irradiance components from direct and global irradiance. Sol Energy 44:271–289Pinazo JM, Cañada J, Bosca JV (1995) A new method to determine Ångström's turbidity coefficient: its application for Valencia. Solar Energy 54:219–226Serrano MA, Boscá JV, Cañada J (2008) The determination of a band factor to express irradiance of UV and PAR wavelength ranges in a clean and dry atmosphere at Valencia (Spain). Int J Ambient Energy 29(4):171–180Utrillas MP, Boscà JV, Martinez-Lozano JA, Cañada J, Tena F, Pinazo JM (1998) A comparative study of Spectral2, and Smarts2 parameterised models based on spectral irradiance measurements at Valencia, Spain. Solar Energy 63:161–171Utrillas MP, Marín MJ, Esteve AR, Tena F, Cañada J, Estellés V, Martínez Lozano JA (2007) Diffuse UV erythemal radiation experimental values. J Geophy Res 112:387–39

    Atmospheric components determination from ground-level measurements during the spectra Barax Campaigns (SPARC) field campaigns

    No full text
    The Surface Processes and Ecosystem Changes Through Response Analysis (SPECTRA) Barrax Campaigns were validation campaigns developed in the framework of the SPECTRA mission in order to verify that the geophysical data products provided by satellite imagery are consistent with the measurements made by independent means. Two campaigns took place in Barrax, Spain, during the summers of 2003 and 2004. This paper presents the results of the characterization of the atmospheric composition from solar radiation, radiosoundings, and lidar measurements. Several potentially interesting situations involving atmospheric layers with different types of aerosols and water content are discussed. The presence of a residual layer capping the mixing layer during some days of the 2003 campaign and the arrival of a dust-rich air mass from the Sahara on the last two days of the 2004 campaign provide some relevant aerosol vertical profiles to test atmospheric correction algorithms. The study of the effects of these atmospheric situations on radiative transfer calculations is required in the development and validation of advanced atmospheric correction codes for the new generation of Earth Observation Systems. © 2007 IEEE

    Implementation of Perez-Dumortier Calibration Algorithm

    No full text
    To avoid the unnecessary needs to travel to high altitude for sunphotometers calibration, Perez-Dumotier calibration algorithm has been used as an objective means to select the right intensity data so that the calibration can be performed at any altitude levels. The governing theory of the algorithm was discussed in the previous chapter. This chapter presents information on how to implement the Perez-Dumotier calibration algorithm using actual field measurement. The implementation of the filtration procedure in step-by-step is discussed to render better framework of the proposed calibration algorithm. The aerosol retrieval inversion uses the extraterrestrial constant obtained from the final Langley plot to calculate retrieved AOD. The implementation example uses irradiance-matched technique by i-SMARTS radiative transfer code to derive corresponding reference AOD for validation purposes. The reliability of the technique was substantiated by radiative closure experiment to verify the promising direct solar irradiance to accurately derive the reference AOD values

    The SPECTRA Barrax campaign (SPARC): Overview and first results from CHRIS data

    No full text
    In the framework of preparatory activities for the SPECTRA (Surface Processes and Ecosystems Changes Through Response Analysis) ESA Earth Explorer Core Mission, CHRIS/PROBA acquisitions over the Barrax Core Site in Spain were used to compile a reference dataset for future in-depth studies. Taking advantage of the possibility of consecutive days of acquisitions, multiple-angular acquisitions finally included 10 different view angles from CHRIS, in Mode 1 with 62 spectral, and a ground resolution of about 34 m. Additional ROSIS and HYMAP sensors, flying simultaneously with CHRIS overpass, provided detailed images for validation of CHRIS data, particularly in the spectral domain. Moreover, up to 3 angles per sample from airborne HYMAP data were acquired, with high spectral and spatial resolution, and then both spectral and angular domains can be exploited with the combined CHRIS/HYMAP/ROSIS dataset. Detailed soil/vegetation and atmospheric measurements complete the SPARC data, and data from other satellites (MERIS, SEVIRI, SPOT, Landsat) were collected as well, to address scaling issues. Methods for data analysis and exploitation have been developed in the context of SPARC activities, and preliminary results about retrievals of biophysical information from multi-angular hyperspectral data are already available. The whole SPARC dataset represents a reference for the exploitation of CHRIS data, allowing the development of new processing and retrieval algorithms, and the validation of such algorithms by means of ground measurements and complementary airborne and satellite data. More details on several processing aspects of the CHRIS/PROBA data acquired within the SPARC campaign are presented in other papers in this conference
    corecore