56 research outputs found

    Hepatitis C Virus Protects Human B Lymphocytes from Fas-Mediated Apoptosis via E2-CD81 Engagement

    Get PDF
    HCV infection is often associated with B-cell regulatory control disturbance and delayed appearance of neutralizing antibodies. CD81 is a cellular receptor for HCV and can bind to HCV envelope protein 2 (E2). CD81 also participates to form a B cell costimulatory complex. To investigate whether HCV influences B cell activation and immune function through E2 -CD81 engagement, here, human Burkitt's lymphoma cell line Raji cells and primary human B lymphocytes (PHB) were treated with HCV E2 protein and cell culture produced HCV particles (HCVcc), and then the related cell phenotypes were assayed. The results showed that both E2 and HCVcc triggered phosphorylation of IκBα, enhanced the expression of anti-apoptosis Bcl-2 family proteins, and protected Raji cells and PHB cells from Fas-mediated death. In addition, both E2 protein and HCVcc increased the expression of costimulatory molecules CD80, CD86 and CD81 itself, and decreased the expression of complement receptor CD21. The effects were dependent on E2-CD81 interaction on the cell surface, since CD81-silenced Raji cells did not respond to both treatments; and an E2 mutant that lose the CD81 binding activity, could not trigger the responses of both Raji cells and PHB cells. The effects were not associated with HCV replication in cells, for HCV pseudoparticle (HCVpp) and HCVcc failed to infect Raji cells. Hence, E2-CD81 engagement may contribute to HCV-associated B cell lymphoproliferative disorders and insufficient neutralizing antibody production

    Alteration in Superoxide Dismutase 1 Causes Oxidative Stress and p38 MAPK Activation Following RVFV Infection

    Get PDF
    Rift Valley fever (RVF) is a zoonotic disease caused by Rift Valley fever virus (RVFV). RVFV is a category A pathogen that belongs to the genus Phlebovirus, family Bunyaviridae. Understanding early host events to an infectious exposure to RVFV will be of significant use in the development of effective therapeutics that not only control pathogen multiplication, but also contribute to cell survival. In this study, we have carried out infections of human cells with a vaccine strain (MP12) and virulent strain (ZH501) of RVFV and determined host responses to viral infection. We demonstrate that the cellular antioxidant enzyme superoxide dismutase 1 (SOD1) displays altered abundances at early time points following exposure to the virus. We show that the enzyme is down regulated in cases of both a virulent (ZH501) and a vaccine strain (MP12) exposure. Our data demonstrates that the down regulation of SOD1 is likely to be due to post transcriptional processes and may be related to up regulation of TNFα following infection. We also provide evidence for extensive oxidative stress in the MP12 infected cells. Concomitantly, there is an increase in the activation of the p38 MAPK stress response, which our earlier published study demonstrated to be an essential cell survival strategy. Our data suggests that the viral anti-apoptotic protein NSm may play a role in the regulation of the cellular p38 MAPK response. Alterations in the host protein SOD1 following RVFV infection appears to be an early event that occurs in multiple cell types. Activation of the cellular stress response p38 MAPK pathway can be observed in all cell types tested. Our data implies that maintaining oxidative homeostasis in the infected cells may play an important role in improving survival of infected cells

    Proteomic Analyses Lead to a Better Understanding of Celiac Disease: Focus on Epitope Recognition and Autoantibodies

    No full text
    Proteomic technologies are being used with increasing frequency in the scientific community. In this review, we have highlighted their use in celiac disease (CD). The available techniques, which include two-dimensional (2D) gel electrophoresis, mass spectrometry, and antibody and tissue arrays, have been used to identify proteins or changes in protein expression specific to gut tissue from patients with CD. A number of studies have employed proteomic methodologies to determine the diagnostic biomarkers in body fluids or to examine changes in protein expression and posttranslational modifications during signaling. A fast technological development of these methods, along with the combination of classic techniques with proteomics, will lead to new discoveries, which will consent a better understanding of the pathogenesis of CD

    Mammalian ATPsynthase monomer versus dimer profiled by blue native PAGE and activity stain

    No full text
    ies into the effects of oligomerization on F(0)F(1)ATPsynthase function are contradictory. We optimized the in-gel ATPase assay to investigate the functional differences of monomers versus dimers. In Triton X-100 extracts of heavy bovine heart mitochondria (HBHM) and mitoplasts, but not submitochondrial particles (MgATP-SMP), dimers had greater specific activity than monomers: at 30 degrees C, the dimer/monomer activity ratios were 2.3, 1.4, and 1.0, respectively. These differences in HBHM and mitoplasts extracts were enhanced at 37 degrees C but lost at 20 degrees C. In mitoplasts but not in MgATP-SMP, dimers were selectively shielded from limited chymotrypsin degradation of F(1) alpha subunit, possibly due to interactions with other proteins or ligands in the native inner membrane. Despite these differences, all three preparations had similar percentages of dimers and similar contents of the native inhibitor IF(1) in Vm (monomer) and (dimer) Vd. These results suggest that, in native membrane, monomers and dimers are functionally distinct

    Comment re: Ran-GTP Control of Tumor Cell Mitosis

    No full text
    • …
    corecore