1,271 research outputs found

    Edible Lepidoptera in Mexico: Geographic distribution, ethnicity, economic and nutritional importance for rural people

    Get PDF
    In this paper, we reported the butterflies and moths that are consumed in Mexico. We identified 67 species of Lepidoptera that are eaten principally in their larval stage in 17 states of Mexico. These species belong to 16 families: Arctiidae, Bombycidae, Castniidae, Cossidae, Geometridae, Hepialidae, Hesperiidae, Lasiocampidae, Noctuidae, Nymphalidae, Papilionidae, Pieridae, Pyralidae, Saturniidae, Sesiidae, and Sphingidae. Saturniidae, Pieridae, Noctuidae and Nymphalidae were the more species consumed with 16, 11, 9, and 8 species, respectively. The genera with the largest numbers of species were: Phassus, Phoebis, Hylesia and Spodoptera, with three species. Their local distribution, corresponding to each state of Mexico, is also presented

    Multiple right-sided pulmonary nodules: metastatic cancer or resectable early stage tumor?

    Get PDF
    The aim of this paper is to focus attention on complex cases of lung disease that may benefit from being managed outside formal guidelines. A 52 year-old man who had previously undergone a laryngectomy for squamous cell carcinoma, presented with a 1.2 cm nodule in the right upper pulmonary lobe. Three months later a new CT scan found that the nodule had slightly increased in size and also detected two new smaller nodules in the middle lobe. A PET/CT scan showed metabolic hyperactivity of all nodules. Since needle aspiration of the upper one revealed malignant cells, the patient was considered to be suffering from metastatic cancer and started on chemotherapy. At follow-up both CT and PET scans found a significant reduction in volume and activity of the lower nodules but no change in the upper one. At diagnostic thoracoscopy, histology demonstrated that the upper nodule was an adenocarcinoma while the lower ones were inflammatory. An upper lobectomy and systematic nodal dissection were therefore performed. Histology established a diagnosis of upper pulmonary adenocarcinoma and sarcoidosis. Our report suggests that in complicated oncologic cases in which non-invasive diagnostic tools yield incongruous results surgery should be considered without delay

    The investigation of acute optic neuritis: a review and proposed protocol

    Get PDF
    Optic neuritis is an inflammatory optic neuropathy that affects many patients with multiple sclerosis (MS) at some point during their disease course. Differentiation of acute episodes of MS-associated optic neuritis from other autoimmune and inflammatory optic neuropathies is vital for treatment choice and further patient management, but is not always straightforward. Over the past decade, a number of new imaging, laboratory and electrophysiological techniques have entered the clinical arena. To date, however, no consensus guidelines have been devised to specify how and when these techniques can be most rationally applied for the diagnostic work-up of patients with acute optic neuritis. In this article, we review the literature and attempt to formulate a consensus for the investigation of patients with acute optic neuritis, both in standard care and in research with relevance to clinical treatment trials

    Thermal Neutron Relative Biological Effectiveness Factors for Boron Neutron Capture Therapy from In Vitro Irradiations

    Get PDF
    The experimental determination of the relative biological effectiveness of thermal neutron factors is fundamental in Boron Neutron Capture Therapy. The present values have been obtained while using mixed beams that consist of both neutrons and photons of various energies. A common weighting factor has been used for both thermal and fast neutron doses, although such an approach has been questioned. At the nuclear reactor of the Institut Laue-Langevin a pure low-energy neutron beam has been used to determine thermal neutron relative biological effectiveness factors. Different cancer cell lines, which correspond to glioblastoma, melanoma, and head and neck squamous cell carcinoma, and non-tumor cell lines (lung fibroblast and embryonic kidney), have been irradiated while using an experimental arrangement designed to minimize neutron-induced secondary gamma radiation. Additionally, the cells were irradiated with photons at a medical linear accelerator, providing reference data for comparison with that from neutron irradiation. The survival and proliferation were studied after irradiation, yielding the Relative Biological Effectiveness that corresponds to the damage of thermal neutrons for the different tissue types.Asociacion Espanola Contra el Cancer (AECC) PS16163811PORRSpanish MINECO FIS2015-69941-C2-1-PJunta de Andalucia P11-FQM-8229Campus of International Excellence BioTic P-BS-64University of Granada Chair Neutrons for Medicine: the Spanish Fundacion ACSAsociacion Capitan AntonioFundacion ACSLa Kuadrilla de IznallozSonriendo Se Puede Gana

    Radiobiology data of melanoma cells after low-energy neutron irradiation and boron compound administration

    Get PDF
    The cold neutron beam at the PF1b line at the Institut Laue-Langevin (ILL), without fast neutrons and a low contribution of gamma rays, is a very suitable facility to measure cell damage following low-energy neutron irradiation. The biological damage associated with the thermal and the boron doses can be obtained in order to evaluate the relative biological effectiveness (RBE) for Boron Neutron Capture Therapy. Three different experiments were carried out on the A375 melanoma cell line: the first one in a hospital LINAC, to obtain the reference radiation data, and the other two at the ILL, in which the damage to cells with and without boron compounds added was measured

    Management of Lung Nodules and Lung Cancer Screening During the COVID-19 Pandemic: CHEST Expert Panel Report

    Get PDF
    Background: The risks from potential exposure to coronavirus disease 2019 (COVID-19), and resource reallocation that has occurred to combat the pandemic, have altered the balance of benefits and harms that informed current (pre-COVID-19) guideline recommendations for lung cancer screening and lung nodule evaluation. Consensus statements were developed to guide clinicians managing lung cancer screening programs and patients with lung nodules during the COVID-19 pandemic. / Methods: An expert panel of 24 members, including pulmonologists (n = 17), thoracic radiologists (n = 5), and thoracic surgeons (n = 2), was formed. The panel was provided with an overview of current evidence, summarized by recent guidelines related to lung cancer screening and lung nodule evaluation. The panel was convened by video teleconference to discuss and then vote on statements related to 12 common clinical scenarios. A predefined threshold of 70% of panel members voting agree or strongly agree was used to determine if there was a consensus for each statement. Items that may influence decisions were listed as notes to be considered for each scenario. / Results: Twelve statements related to baseline and annual lung cancer screening (n = 2), surveillance of a previously detected lung nodule (n = 5), evaluation of intermediate and high-risk lung nodules (n = 4), and management of clinical stage I non–small-cell lung cancer (n = 1) were developed and modified. All 12 statements were confirmed as consensus statements according to the voting results. The consensus statements provide guidance about situations in which it was believed to be appropriate to delay screening, defer surveillance imaging of lung nodules, and minimize nonurgent interventions during the evaluation of lung nodules and stage I non–small-cell lung cancer. / Conclusions: There was consensus that during the COVID-19 pandemic, it is appropriate to defer enrollment in lung cancer screening and modify the evaluation of lung nodules due to the added risks from potential exposure and the need for resource reallocation. There are multiple local, regional, and patient-related factors that should be considered when applying these statements to individual patient care

    Effect of the carbon nanotube surface characteristics on the conductivity and dielectric constant of carbon nanotube/poly(vinylidene fluoride) composites

    Get PDF
    Commercial multi-walled carbon nanotubes (CNT) were functionalized by oxidation with HNO3, to introduce oxygen-containing surface groups, and by thermal treatments at different temperatures for their selective removal. The obtained samples were characterized by adsorption of N2 at -196°C, temperature-programmed desorption and determination of pH at the point of zero charge. CNT/poly(vinylidene fluoride) composites were prepared using the above CNT samples, with different filler fractions up to 1 wt%. It was found that oxidation reduced composite conductivity for a given concentration, shifted the percolation threshold to higher concentrations, and had no significant effect in the dielectric response

    Chemical Synergy between Ionophore PBT2 and Zinc Reverses Antibiotic Resistance.

    Get PDF
    The World Health Organization reports that antibiotic-resistant pathogens represent an imminent global health disaster for the 21st century. Gram-positive superbugs threaten to breach last-line antibiotic treatment, and the pharmaceutical industry antibiotic development pipeline is waning. Here we report the synergy between ionophore-induced physiological stress in Gram-positive bacteria and antibiotic treatment. PBT2 is a safe-for-human-use zinc ionophore that has progressed to phase 2 clinical trials for Alzheimer's and Huntington's disease treatment. In combination with zinc, PBT2 exhibits antibacterial activity and disrupts cellular homeostasis in erythromycin-resistant group A Streptococcus (GAS), methicillin-resistant Staphylococcus aureus (MRSA), and vancomycin-resistant Enterococcus (VRE). We were unable to select for mutants resistant to PBT2-zinc treatment. While ineffective alone against resistant bacteria, several clinically relevant antibiotics act synergistically with PBT2-zinc to enhance killing of these Gram-positive pathogens. These data represent a new paradigm whereby disruption of bacterial metal homeostasis reverses antibiotic-resistant phenotypes in a number of priority human bacterial pathogens.IMPORTANCE The rise of bacterial antibiotic resistance coupled with a reduction in new antibiotic development has placed significant burdens on global health care. Resistant bacterial pathogens such as methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus are leading causes of community- and hospital-acquired infection and present a significant clinical challenge. These pathogens have acquired resistance to broad classes of antimicrobials. Furthermore, Streptococcus pyogenes, a significant disease agent among Indigenous Australians, has now acquired resistance to several antibiotic classes. With a rise in antibiotic resistance and reduction in new antibiotic discovery, it is imperative to investigate alternative therapeutic regimens that complement the use of current antibiotic treatment strategies. As stated by the WHO Director-General, "On current trends, common diseases may become untreatable. Doctors facing patients will have to say, Sorry, there is nothing I can do for you.

    Neutrophils in cancer: neutral no more

    Get PDF
    Neutrophils are indispensable antagonists of microbial infection and facilitators of wound healing. In the cancer setting, a newfound appreciation for neutrophils has come into view. The traditionally held belief that neutrophils are inert bystanders is being challenged by the recent literature. Emerging evidence indicates that tumours manipulate neutrophils, sometimes early in their differentiation process, to create diverse phenotypic and functional polarization states able to alter tumour behaviour. In this Review, we discuss the involvement of neutrophils in cancer initiation and progression, and their potential as clinical biomarkers and therapeutic targets

    Resuscitation of Newborn Piglets. Short-Term Influence of FiO2 on Matrix Metalloproteinases, Caspase-3 and BDNF

    Get PDF
    Perinatal hypoxia-ischemia is a major cause of mortality and cerebral morbidity, and using oxygen during newborn resuscitation may further harm the brain. The aim was to examine how supplementary oxygen used for newborn resuscitation would influence early brain tissue injury, cell death and repair processes and the regulation of genes related to apoptosis, neurodegeneration and neuroprotection.Anesthetized newborn piglets were subjected to global hypoxia and then randomly assigned to resuscitation with 21%, 40% or 100% O(2) for 30 min and followed for 9 h. An additional group received 100% O(2) for 30 min without preceding hypoxia. The left hemisphere was used for histopathology and immunohistochemistry and the right hemisphere was used for in situ zymography in the corpus striatum; gene expression and the activity of various relevant biofactors were measured in the frontal cortex. There was an increase in the net matrix metalloproteinase gelatinolytic activity in the corpus striatum from piglets resuscitated with 100% oxygen vs. 21%. Hematoxylin-eosin (HE) staining revealed no significant changes. Nine hours after oxygen-assisted resuscitation, caspase-3 expression and activity was increased by 30-40% in the 100% O(2) group (n = 9/10) vs. the 21% O(2) group (n = 10; p<0.04), whereas brain-derived neurotrophic factor (BDNF) activity was decreased by 65% p<0.03.The use of 100% oxygen for resuscitation resulted in increased potentially harmful proteolytic activities and attenuated BDNF activity when compared with 21%. Although there were no significant changes in short term cell loss, hyperoxia seems to cause an early imbalance between neuroprotective and neurotoxic mechanisms that might compromise the final pathological outcome
    corecore