4 research outputs found

    Geographical variation in morphology of Chaetosiphella stipae stipae Hille Ris Lambers, 1947 (Hemiptera: Aphididae: Chaitophorinae)

    Get PDF
    Chaetosiphella stipae stipae is a xerothermophilous aphid, associated with Palaearctic temperate steppe zones or dry mountain valleys, where there are grasses from the genus Stipa. Its geographical distribution shows several populations that are spread from Spain, across Europe and Asia Minor, to Mongolia and China. Geographical variation in chaetotaxy and other morphological features were the basis to consider whether individuals from different populations are still the same species. Moreover, using Ch. stipae stipae and Stipa species occurrences, as well as climatic variables, we predict potential geographical distributions of the aphid and its steppe habitat. Additionally, for Stipa species we projected current climatic conditions under four climate change scenarios for 2050 and 2070. While highly variable, our results of morphometric analysis demonstrates that all Ch. stipae stipae populations are one very variable subspecies. And in view of predicted climate change, we expect reduction of Stipa grasslands. The disappearance of these ecosystems could result in stronger separation of the East-European and Asian steppes as well as European ‘warm-stage’ refuges. Therefore, the geographic morphological variability that we see today in the aphid subspecies Ch. stipae stipae may in the future lead to speciation and creation of separate subspecies or species

    Morphometric Relationship, Phylogenetic Correlation, and Character Evolution in the Species-Rich Genus Aphis (Hemiptera: Aphididae)

    Get PDF
    The species-rich genus Aphis consists of more than 500 species, many of them host-specific on a wide range of plants, yet very similar in general appearance due to convergence toward particular morphological types. Most species have been historically clustered into four main phenotypic groups (gossypii, craccivora, fabae, and spiraecola groups). To confirm the morphological hypotheses between these groups and to examine the characteristics that determine them, multivariate morphometric analyses were performed using 28 characters measured/counted from 40 species. To infer whether the morphological relationships are correlated with the genetic relationships, we compared the morphometric dataset with a phylogeny reconstructed from the combined dataset of three mtDNA and one nuclear DNA regions.Based on a comparison of morphological and molecular datasets, we confirmed morphological reduction or regression in the gossypii group unlike in related groups. Most morphological characteristics of the gossypii group were less variable than for the other groups. Due to these, the gossypii group could be morphologically well separated from the craccivora, fabae, and spiraecola groups. In addition, the correlation of the rates of evolution between morphological and DNA datasets was highly significant in their diversification.The morphological separation between the gossypii group and the other species-groups are congruent with their phylogenetic relationships. Analysis of trait evolution revealed that the morphological traits found to be significant based on the morphometric analyses were confidently correlated with the phylogeny. The dominant patterns of trait evolution resulting in increased rates of short branches and temporally later evolution are likely suitable for the modality of Aphis speciation because they have adapted species-specifically, rapidly, and more recently on many different host plants
    corecore