59 research outputs found

    Different Host Exploitation Strategies in Two Zebra Mussel-Trematode Systems: Adjustments of Host Life History Traits

    Get PDF
    The zebra mussel is the intermediate host for two digenean trematodes, Phyllodistomum folium and Bucephalus polymorphus, infecting gills and the gonad respectively. Many gray areas exist relating to the host physiological disturbances associated with these infections, and the strategies used by these parasites to exploit their host without killing it. The aim of this study was to examine the host exploitation strategies of these trematodes and the associated host physiological disturbances. We hypothesized that these two parasite species, by infecting two different organs (gills or gonads), do not induce the same physiological changes. Four cellular responses (lysosomal and peroxisomal defence systems, lipidic peroxidation and lipidic reserves) in the host digestive gland were studied by histochemistry and stereology, as well as the energetic reserves available in gonads. Moreover, two indices were calculated related to the reproductive status and the physiological condition of the organisms. Both parasites induced adjustments of zebra mussel life history traits. The host-exploitation strategy adopted by P. folium would occur during a short-term period due to gill deformation, and could be defined as “virulent.” Moreover, this parasite had significant host gender-dependent effects: infected males displayed a slowed-down metabolism and energetic reserves more allocated to growth, whereas females displayed better defences and would allocate more energy to reproduction and maintenance. In contrast, B. polymorphus would be a more “prudent” parasite, exploiting its host during a long-term period through the consumption of reserves allocated to reproduction

    Cytotoxicity and cellular mechanisms of toxicity of CuO NPs in mussel cells in vitro and comparative sensitivity with human cells

    No full text
    There is a need to assess human and ecosystem health effects of copper oxide nanoparticles (CuO NPs), extensively used in many industrial products. Here, we aimed to determine the cytotoxicity and cellular mechanisms involved in the toxicity of CuO NPs in mussel cells (hemocytes and gill cells) in parallel with exposures to ionic Cu and bulk CuO, and to compare the sensitivity of mussel primary cells with a well-established human cell line (pulmonary TT1 cells). At similar doses, CuO NPs promoted dose-dependent cytotoxicity and increased reactive oxygen species (ROS) production in mussel and human cells. In mussel cells, ionic Cu was more toxic than CuO NPs and the latter more than bulk CuO. Ionic Cu and CuO NPs increased catalase and acid phosphatase activities in both mussel cells and decreased gill cells Na-K-ATPase activity. All Cu forms produced DNA damage in hemocytes, whereas in gill cells only ionic Cu and CuO NPs were genotoxic. Induction of the MXR transport activity was found in gill cells exposed to all forms of Cu and in hemocytes exposed to ionic Cu and CuO NPs. Phagocytosis increased only in hemocytes exposed to CuO NPs, indicating a nanoparticle-specific immunostimulatory effect. In conclusion, toxicity of CuO NPs is driven by ROS in human and mussel cells. Mussel cells respond to CuO NP exposure by triggering an array of defensive mechanisms

    Endocrine disruptors in marine organisms: approaches and perspectives

    No full text
    Organic pollutants exhibiting endocrine disrupting activity (Endocrine Disruptors—EDs) are prevalent over a wide range in the aquatic ecosystems; most EDs are resistant to environmental degradation and are considered ubiquitous contaminants. The actual potency of EDs is low compared to that of natural hormones, but environmental concentrations may still be sufficiently high to produce detrimental biological effects. Most information on the biological effects and mechanisms of action of EDs has been focused on vertebrates. Here we summarize recent progress in studies on selected aspects of endocrine disruption in marine organisms that are still poorly understood and that certainly deserve further research in the near future. This review, divided in four sections, focuses mainly on invertebrates (effects of EDs and mechanisms of action) and presents data on top predators (large pelagic fish and cetaceans), a group of vertebrates that are particularly at risk due to their position in the food chain. The first section deals with basic pathways of steroid biosynthesis and metabolism as a target for endocrine disruption in invertebrates. In the second section, data on the effects and alternative mechanisms of action of estrogenic compounds in mussel immunocytes are presented, addressing to the importance of investigating full range responses to estrogenic chemicals in ecologically relevant invertebrate species. In the third section we review the potential use of vitellogenin (Vtg)-like proteins as a biomarker of endocrine disruption in marine bivalve molluscs, used worldwide as sentinels in marine biomonitoring programmes. Finally, we summarize the results of a recent survey on ED accumulation and effects on marine fish and mammals, utilizing both classical biomarkers of endocrine disruption in vertebrates and non-lethal techniques, such as non-destructive biomarkers, indicating the toxicological risk for top predator species in the Mediterranean. Overall, the reviewed data underline the potential to identify specific types of responses to specific groups of chemicals such as EDs in order to develop suitable biomarkers that could be useful as diagnostic tools for endocrine disruption in marine invertebrates and vertebrates
    corecore