20 research outputs found
Genomic rearrangements in the CFTR gene: extensive allelic heterogeneity and diverse mutational mechanisms
Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator gene (CFTR/ABCC7). Despite the extensive and enduring efforts of many CF researchers over the past 14 years, up to 30% of disease alleles still remain to be identified in some populations. It has long been suggested that gross genomic rearrangements could account for these unidentified alleles. To date, however, only a few large deletions have been found in the CFTR gene and only three have been fully characterized. Here, we report the first systematic screening of the 27 exons of the CFTR gene for large genomic rearrangements, by means of the quantitative multiplex PCR of short fluorescent fragments (QMPSF). A well-characterized cohort of 39 classical CF patients carrying at least one unidentified allele (after extensive and complete screening of the CFTR gene by both denaturing gradient gel electrophoresis and denaturing high-performance liquid chromatography) participated in this study. Using QMPSF, some 16% of the previously unidentified CF mutant alleles were identified and characterized, including five novel mutations (one large deletion and four indels). The breakpoints of these five mutations were precisely determined, enabling us to explore the underlying mechanisms of mutagenesis. Although non-homologous recombination may be invoked to explain all five complex lesions, each mutation appears to have arisen through a different mechanism. One of the indels was highly unusual in that it involved the insertion of a short 41 bp sequence with partial homology to a retrotranspositionally-competent LINE-1 element. The insertion of this ultra-short LINE-1 element (dubbed a "hyphen element") may constitute a novel type of mutation associated with human genetic disease
Complete ascertainment of intragenic copy number mutations (CNMs) in the CFTR gene and its implications for CNM formation at other autosomal loci
Over the last 20 years since the discovery of the cystic fibrosis transmembrane conductance regulator (CFTR) gene, more than 1,600 different putatively pathological CFTR mutations have been identified. Until now, however, copy number mutations (CNMs) involving the CFTR gene have not been methodically analyzed, resulting almost certainly in the underascertainment of CFTR gene duplications compared with deletions. Here, high-resolution array comparative genomic hybridization (averaging one interrogating probe every 95 bp) was used to analyze the entire length of the CFTR gene (189 kb) in 233 cystic fibrosis chromosomes lacking conventional mutations. We succeeded in identifying five duplication CNMs that would otherwise have been refractory to analysis. Based upon findings from this and other studies, we propose that deletion and duplication CNMs in the human autosomal genome are likely to be generated in the proportion of approximately 2–3:1. We further postulate that intragenic gene duplication CNMs in other disease loci may have been routinely underascertained. Finally, our analysis of ±20 bp flanking each of the 40 CFTR breakpoints characterized at the DNA sequence level provide support for the emerging concept that non-B DNA conformations in combination with specific sequence motifs predispose to both recurring and nonrecurring genomic rearrangements
Gross genomic rearrangements involving deletions in the CFTR gene: characterization of six new events from a large cohort of hitherto unidentified cystic fibrosis chromosomes and meta-analysis of the underlying mechanisms
Gross genomic rearrangements involving deletions in the CFTR gene have recently been found to account for approx20% of unidentified cystic fibrosis (CF) chromosomes in both French and Italian patients. Using QMPSF and walking quantitative DHPLC, six novel mutations (three simple deletions, two complex deletions with short insertions of 3–6 bp, and a complex deletion with a 182 bp inverted downstream sequence) were characterized by screening 274 unidentified CF chromosomes from 10 different countries. These lesions increase the total number of fully characterized large CFTR genomic rearrangements involving deletions to 21. Systematic analysis of the 42 associated breakpoints indicated that all 21 events were caused by nonhomologous recombination. Whole gene complexity analysis revealed a significant correlation between regions of low sequence complexity and the locations of the deletion breakpoints. Known recombination-promoting motifs were noted in the vicinity of the breakpoints. A total of 11 simple deletions were potentially explicable in terms of the classical model of replication slippage. However, the complex deletions appear to have arisen via multiple mechanisms; three of the five complex deletions with short insertions and both examples of large inverted insertions (299 and 182 bp, respectively) can be explained by either a model of serial replication slippage in cis (SRScis) or SRS in trans (SRStrans). Finally, the nature and distribution of large genomic rearrangements in the CFTR gene were compared and contrasted with those of two other genes, DMD and MSH2, with a view to gaining a broader understanding of DNA sequence context in mediating the diverse underlying mutational mechanisms