4,154 research outputs found
Proof of the cases of the Lieb-Seiringer formulation of the Bessis-Moussa-Villani conjecture
It is shown that the polynomial has
nonnegative coefficients when and A and B are any two complex
positive semidefinite matrices with arbitrary . This proofs a
general nontrivial case of the Lieb-Seiringer formulation of the
Bessis-Moussa-Villani conjecture which is a long standing problem in
theoretical physics.Comment: 5 pages; typos corrected; accepted for publication in Journal of
Statistical Physic
Fire-resistant materials for aircraft passenger seat construction
The thermal response characteristics of fabric and fabric-foam assemblies are described. The various aspects of the ignition behavior of contemporary aircraft passenger seat upholstery fabric materials relative to fabric materials made from thermally stable polymers are evaluated. The role of the polymeric foam backing on the thermal response of the fabric-foam assembly is also ascertained. The optimum utilization of improved fire-resistant fabric and foam materials in the construction of aircraft passenger seats is suggested
Teleportation of a Zero-and One-photon Running Wave State by Projection Synthesis
We show how to teleport a running wave superposition of zero- and one-photon
field state through the projection synthesis technique. The fidelity of the
scheme is computed taking into account the noise introduced by dissipation and
the efficiency of the detectors. These error sources have been introduced
through a single general relationship between input and output operators.Comment: 11 pages, 1 figur
Bilinear and quadratic Hamiltonians in two-mode cavity quantum electrodynamics
In this work we show how to engineer bilinear and quadratic Hamiltonians in
cavity quantum electrodynamics (QED) through the interaction of a single driven
two-level atom with cavity modes. The validity of the engineered Hamiltonians
is numerically analyzed even considering the effects of both dissipative
mechanisms, the cavity field and the atom. The present scheme can be used, in
both optical and microwave regimes, for quantum state preparation, the
implementation of quantum logical operations, and fundamental tests of quantum
theory.Comment: 11 pages, 3 figure
Experimental approximation of the Jones polynomial with DQC1
We present experimental results approximating the Jones polynomial using 4
qubits in a liquid state nuclear magnetic resonance quantum information
processor. This is the first experimental implementation of a complete problem
for the deterministic quantum computation with one quantum bit model of quantum
computation, which uses a single qubit accompanied by a register of completely
random states. The Jones polynomial is a knot invariant that is important not
only to knot theory, but also to statistical mechanics and quantum field
theory. The implemented algorithm is a modification of the algorithm developed
by Shor and Jordan suitable for implementation in NMR. These experimental
results show that for the restricted case of knots whose braid representations
have four strands and exactly three crossings, identifying distinct knots is
possible 91% of the time.Comment: 5 figures. Version 2 changes: published version, minor errors
corrected, slight changes to improve readabilit
- …